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Abstract. Intelligent Transport Systems (ITS) tend to be more dis-
tributed and embedded. In many cases, continuous physical parameters
are part of the systems description. Analysis techniques based on dis-
crete models must integrate such constraints. In this paper, we propose
a methodological way to handle such hybrid systems with model check-
ing on Petri Nets and algebraic methods. Our methodology is based on
transformations from Coloured Petri Nets (CPN) for their expressive-
ness to Symmetric Petri Nets (SN) to take advantage of their efficient
verification techniques. Our methodology also addresses the impact of
discretization on the precision of verification. In scientific computing,
the discretization process introduces “error intervals” that could turn a
given verified property into a false positive one. In that case, the property
to be verified might have to be transformed to cope with such precision
errors.
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Intelligent Transport Systems, Hybrid Systems.

1 Introduction

Future supervision systems tend to be more distributed and embedded. Paral-
lelism brings a huge complexity and then, a strong need to deduce good and bad
behaviours on the global system, from the known behaviour of its actors. This
is crucial since safety critical missions can be supervised by such systems. Intel-
ligent Transport Systems (ITS) are a typical example: many functions tend to
be integrated in vehicles and road infrastructure. Moreover, in many cases phys-
ical constraints are part of such systems. Analysis techniques based on discrete
models must integrate such constraints: we then speak of hybrid systems.

A major trend in formal analysis is to cope with such systems. This raises
many issues in terms of analysis complexity. Some techniques are dedicated to



continuous analysis such as algebraic approaches like B [1]. However, such ap-
proaches are difficult to set up and most industries prefer push-button tools.
Model checking easily offers such push-button tools but does not cope well with
continuous systems. Most model checking techniques deal with discrete and finite
systems. Thus, management of hybrid systems is not easy or leads to potentially
infinite systems that are difficult to verify. For example, management of contin-
uous time requires much care, even to only have decidable models. Hybrid Petri
Nets [19] might be a solution to model and analyze hybrid systems but no tool
is available to test neither safety nor temporal logic properties [40].

In this paper, we propose a methodology to handle hybrid systems with
model checking on Petri Nets and algebraic methods. Our methodology is based
on transformations from Coloured Petri Nets (CPN) [30] to Symmetric Petri
Nets4 (SN) [11, 12]. CPN expressiveness allows an easy modelling of the system
to be analyzed. SN are of interest for their analysis because of the symbolic state
space that is efficient to represent the state space of large systems. Since SN offer
a limited set of operations on colours, transformation from CPN requires much
care from the designer as regards the types to be discretized.

Our methodology also addresses an important question: what is the impact
of discretization on the precision of verification? As in scientific computing, the
discretization process introduces “precision errors” that could turn a given ver-
ified property into a false positive one. In that case, the property to be verified
might have to be transformed to take into consideration such precision errors.

Sect. 2 briefly recalls the notions of CPN and SN, as well as abstraction/refine-
ment, type issues. Our methodology which involves modelling, discretization and
verification is presented in Sect. 3, and we show in Sect. 4 how we model our
Emergency Braking application. The various discretization concepts on our case
study are detailed in Sect. 5, and our experiments on net analyses are presented
in Sect. 6. Some perspectives on discretization are also discussed in Sect. 7 before
a conclusion.

2 Building Blocks

This section presents the building blocks from the state of the art used in the
discretization method.

2.1 Coloured Petri Nets

Coloured Petri nets [30] are high level Petri nets where tokens in a place carry
data (or colours) of a given type. Since several tokens may carry the same value,
the concept of multiset (or bag) is used to describe the marking of places.

In this paper, we assume the reader is familiar with the concept of multisets.
We thus recall briefly the formal definition of coloured Petri nets as in [30]. It

4 Symmetric nets were formerly known as Well-Formed nets, a subclass of High-level
Petri nets. The new name appeared during the ISO standardisation of Petri nets [27].



should be noted however that the types considered for the place tokens may be
basic types (e.g. boolean, integers, reals, strings, enumerated types) or structured
types – also called compound colour sets – (e.g. lists, product, union, etc.). In
both cases, the type definition includes the appropriate (or usual) functions.

Different languages were proposed to support the type definition for coloured
Petri nets (e.g. algebraic specification languages as first introduced in [43], object
oriented languages [8]), and an extension of the Standard ML language was
chosen for CPN Tools [17]. As always, there may be a tradeoff between the
expressivity of a specification language, and efficiency when tools are used to
compute executions, state graphs, etc. If expressivity is favored, it could be
desirable to allow any appropriate type and function, while when tools should
be used to check the behaviour and the properties of the system studied, the
allowed types and functions are restricted (as the language allowed for CPN Tools
or as in Symmetric Nets presented in Sect. 2.2). Here, to start with we want to
allow a specification language that fits as much as possible what is needed to
describe the problem under study, and then to show how the specification is
transformed so as to allow computations and checks by tools.

In the following, we refer to EXPR as the set of expressions provided by the
net inscription language (net inscriptions are arcs expressions, guards, colour
sets and initial markings), and to EXPRV as the set of expressions e ∈ EXPR
such that V ar[e] ⊆ V (V ar[e] denotes the set of variables occurring in e).

Definition 21 A non-hierarchical coloured Petri net CPN [30] is a tuple CPN =
(P, T, A, Σ, V, C, G, E, I) such that:

1. P is a finite set of places.

2. T is a finite set of transitions such that P ∩ T = ∅.

3. A ⊆ P × T ∪ T × P is a set of directed arcs.

4. Σ is a finite set of non empty colour sets (types).

5. V is a finite set of typed variables such that ∀v ∈ V, T ype[v] ∈ Σ.

6. C : P → Σ is a colour set function assigning a colour set (or a type) to
each place.

7. G : T → EXPRV is a guard function assigning a guard to each transition
such that Type(G(t)) = Bool, and V ar[G(t)] ⊆ V , where V ar[G(t)] is the
set of variables of G(t).

8. E : A → EXPRV is an arc expression function assigning an arc ex-
pression to each arc such that Type(E(a)) = C(p)MS , where p is the place
connected to the arc a.

9. I : A → EXPRV is an initialisation function assigning an initial marking
to each place such that Type(I(p)) = C(p)MS .

As explained in Sect. 3, the first step of our methodology is to produce a
CPN model for the application. The next step is a transformation motivated by
the discretization of continuous functions to obtain a symmetric net.



Class
   P is 1..PR;
   Val is 1..V;
Domain
   D is <P,Val>;

Var
   p in P;
   v, v2 in Val;

•CR
Val

<Val.all>

outCS

compute
D

InCS
out
P

<P.all>

Mutex<p>

<v><p, v>

<p, v>

<p>

<v>

Fig. 1. Example of Symmetric Net

2.2 Symmetric Nets

Symmetric nets were introduced in [11, 12], with the goal of exploiting symme-
tries in distributed systems to get a more compact representation of the state
space.

The concept of symmetric nets is similar to the coloured Petri net one. How-
ever, the allowed types for the places as well as allowed colour functions are
more restricted. These restrictions allow us to compute symmetries and obtain
very compact representations of the state space, enabling the analysis of complex
systems as in [28].

Basically, types must be finite enumerations and can only be combined by
means of cartesian products. Allowed functions in arc expressions are: identity,
successor, predecessor and broadcast (that generates one copy of any value in
the type). These constraints affect points 4, 6, 7, 8, 9 in Definition 21.

The Symmetric net in Fig. 1 models a class of threads (identified by type
P ) accessing a critical resource CR. Threads can get a value within the type
Val from CR. Constants PR and V are integer parameters for the system. The
class of threads is represented by places out and compute.

Place compute corresponds to some computation on the basis of the value
provided by CR. At this stage, each thread holds a value that is replaced when
the computation is finished. Place Mutex handles mutual exclusion between
threads and contains token with no data (”black tokens” in the sense of the
Petri Net standard [29]). Place out initially holds one token for each value in P
(this is denoted <P.all>) and place CR holds one value for each value in type
Val .

The main interest of SN is the possibility to generate a symbolic state space.
A symbolic state (in the symbolic state space) represents a set of concrete states

(<1>,<2,2>,<1>,0)(<1>,<2,1>,<2>,0)(<2>,<1,2>,<1>,0)(<2>,<1,1>,<2>,0)

(<1>+<2>,_,<1>+<2>,1)  

InCS
  p = 1
  v = 1

InCS
  p = 1
  v = 2

InCS
  p = 2
  v = 1

InCS
  p = 2
  v = 2

outCS  p = 1
  v = 1

outCS
  p = 1
  v = 2

outCS
  p = 2
  v = 1 outCS

  p = 2
  v = 2

Fig. 2. State space of the model in Fig. 1

out: P.all / any p from P
 compute: <any p from P,any v from Val>
CR: Val.all / any v from Val

out: P.all
CR: Val.all

outCSInCS

Fig. 3. Symbolic state space



with a similar structure. This is well illustrated in Fig. 3 where the upper sym-
bolic state represents the four upper states in Fig. 2.

In Fig. 3, the bottom state corresponds to the initial marking where out
contains one token per value in type P and CR one token per value in type Val .
The top state represents a set of states with permutations on binding variables
p and v. There, place compute holds one token only while places out and CR
hold one token per value in the place type minus the value used to build the
token in place compute.

Let us note that in some case (like here), the symbolic5 state space does not
change with types P and Val or initial markings, which yields a very compact
representation of the system behaviour. The symbolic state space may even be
exponentially smaller than the explicit state space.

Verification of properties can be achieved either by a structural analysis,
on the symbolic state space (model checking), or on the unfolded associated
Place/Transition (P/T) net (essentially to compute structural properties).

2.3 Transformation, Abstraction and Refinement

Abstraction and refinement are part of the use of formal specifications. While
abstraction is crucial to concentrate on essential aspects of the problem to be
solved (or the system to be built), and to reason about them, more elaborate
details need to be further introduced in the refinement steps. A similar evolution
is taking place when a general pattern or template is established to describe the
common structure of a family of problems, and when this template is instantiated
to describe a single given problem.

Three kinds of refinement for coloured Petri nets are introduced in [34, 35],
the type refinement, the node refinement and the subnet refinement. These re-
finements are correct if behaviours are preserved and if, to any behaviour of a
refined net it is possible to match a behaviour of the abstract net.

Another motivation is raised by the use of tools to check the behaviour and
properties of the model, since it may involve the discretization of some domains
so as to reduce the number of possible values to consider in the state space. It
thus involves a simplification of some domains that may be considered as an
abstraction.

3 Methodology for Discretization

This section presents our methodology to model and analyse an hybrid system.
We give an overview and then detail its main steps and the involved techniques.

5 The word symbolic has several meanings in model checking. Here, it refers to the
symbolic state space, which is a set-based representation of the state space. It is also
used in symbolic model checking to indicate the encoding of explicit states by means
of decision diagrams (such as BDD). This term is also used later in the paper.



3.1 Overview of the Methodology

Fig. 4 sketches our methodology. It takes as input a set of requirements. It is
thus divided in two parts:

– the specification describes the system (we only consider in this work the
behavioural aspects),

– the required properties establish a set of assertions to be verified by the
system.

S p e c i fi c a t i o nR e q u i r e dp r o p e r t i e s M o d e l l i n g C P N m o d e lC P Np r o p e r t i e s D i s c r e t i z a t i o n S N m o d e lS N p r o p e r t i e s F o r m a lV e r i fi c a t i o nc o n t i n u o u s f u n c t i o n sp r e c i s i o n o n p r o p e r t i e s v e r i f i c a t i o n c o n s t r a i n t s
A n a l y s i s f e e d 9 b a c k

Fig. 4. Overview of our methodology

Once the specification written using “classical” techniques, the system is
modelled using high-level Petri Nets (CPN) that allow one to insert complex
colour functions such as ones involving real numbers. These functions come from
the specifications of the system (in Intelligent Transport Systems, numerous
behaviours are described by means of equations describing physical models).
These functions are inserted in arc labels into the CPN-model produced by the
Modelling step. Required properties are also set in terms of CPN.

However, the CPN system cannot be analysed in practice since the system
is too complex (due to the data and functions involved). So, the Discretiza-
tion step is dedicated to the generation of an associated system expressed using
Symmetric Nets. Symmetric Nets are well suited to specify such systems that
are intrinsically symmetric [5]. Operations such as structural analysis or model
checking can be achieved for much larger systems. Formal analysis of the system
is performed at the Formal Verification step.

Let us note that a similar transformation is achieved in [3] instead from
coloured Petri nets to counter systems. The goal in this work is similar, being
able to analyze a CPN specification, but not in the domain of hybrid systems.

The following sections present the three main steps of our methodology and
especially focus on the Discretization step that is the most delicate one as well
as the main contribution of this paper.

3.2 Modelling

There are heterogeneous elements to consider in Intelligent Transport Systems
(ITS): computerized actors (such as cars or controllers in a motorway infrastruc-



ture) have to deal with physical variables such as braking distances, speed and
weight.

If those continuous variables were not modelled, only a subpart of the “re-
quired properties” of the system could be checked. Especially, it is not possible
to verify properties related to quantitative variables.

Our work aims at providing a more precise representation of the system in the
Petri net models by representing those quantitative variables. To design the CPN
model we used a template adapted to the case study presented in Sect. 4. The
“interfaces” of the Petri net model, presented in Sect. 5, were already identified.
The main task was to identify control and data flows that are involved in this
subpart of the system, and that must be modelled to allow formal verification.
Also, operations made on those flows were identified.

Then, the different selected variables of the system were represented using
equivalent types in CPN. For example, continuous variables of the system were
modelled with the real type of CPN formalism. The functions of the system that
manipulate the continuous variables were represented using arc expressions.

3.3 Discretization

The discretization step takes CPN with their properties as inputs, and produces
SN with their properties as outputs. To achieve this goal, a discretization of the
real data and functions involved is performed. As a result, the types involved
in the CPN are abstracted, and the real functions are represented by a place
providing tuples of appropriate result values.

We propose different steps to manage the discretization of continuous func-
tions in Symmetric Nets:
- Step 1: Continuous feature discretization
- Step 2: Error propagation computing
- Step 3: Type transformation and modelling of complex functions in Symmetric
Nets.

Step 1 - Continuous feature discretization Discretization is the process of
transforming continuous models and equations into discrete counterparts. De-
pending on the domain to which this process is applied we use also the words
“digitizing”, “digitization”, “sampling”, “quantization” or “encoding”. Tech-
niques for discretization differ according to application domains and objectives.

Let us introduce the following definitions to avoid ambiguity in this paper:

Definition 31 A region is a n-dimensional polygon (i.e. a polytope) made by
adjacent points of an n-dimensional discretized function.

Definition 32 A mesh is a set of regions used to represent a n-dimensional
discretized function for modeling or analysis.

There exist many discretization methods that can be classified between global
or local, supervised or unsupervised, and static or dynamic methods [20].



– Local methods produce partitions that are applied to localized regions of
the instance space. Those methods usually use decision trees to produce the
partitions (i.e. the classification).

– Global methods (like binning) [20] produce a mesh over the entire n-
dimensional continuous instance space, where each feature is partitioned
into regions. The mesh contain

∏n

i=1 ki regions, where ki is the number of
partitions of the ith feature.

In our study we consider the equal width interval binning method [20]
as a first approach to discretize the continuous features. Equal width interval
binning is a global unsupervised method that involves dividing the range of
observed values for the variable into k equally sized intervals, where k is a pa-
rameter provided by the user. If a variable x is bounded by xmin and xmax, the
interval width is:

∆ =
xmax − xmin

k
(1)

Step 2 - Error propagation computing To model a continuous function in

Symmetric Nets it is necessary to convert it into an equivalent discrete function.
This operation introduces inaccuracy (or error) which must be taken into account
during the formal verification of the model. This inaccuracy can be taken into
account in the Symmetric Net properties in order to keep them in accordance
with the original system required properties. The other solution is to change the
original required properties taking into account the introduced inaccuracy.

The issues are well expressed in [10]: “in science, the terms uncertainties or
errors do not refer to mistakes or blunders. Rather, they refer to those uncer-
tainties that are inherent in all measurements and can never be completely elim-
inated.(...) A large part of a scientist’s effort is devoted to understanding these
uncertainties (error analysis) so that appropriate conclusions can be drawn from
variable observations. A common complaint of students is that the error analysis
is more tedious than the calculation of the numbers they are trying to measure.
This is generally true. However, measurements can be quite meaningless without
knowledge of their associated errors.”

There are different methods to compute the error propagation in a func-
tion [36, 10]. The most current one is to determine the separate contribution due
to errors on input variables and to combine the individual contributions in a
quadrature.

∆f(x,y,..) =
√

∆2
fx + ∆2

fy + ... (2)

Then, different methods to compute the contribution of input variables to the
error in the function are possible, like the “derivative method” or the “compu-
tational method”.

– The derivative method evaluates the contribution of a variable x to the error
on a function f as the product of the error on x (i.e. ∆x) with the partial
derivative of f(x, y, ..):

∆fx =
∂f(x, y, ..)

∂x
∆x (3)



– The computational method computes the variation by a finite difference:

∆fx =| f(x + ∆x, y, ..) − f(x, y, ..) | (4)

The use of individual contributions in a quadrature relies on the assumption
that the variables are independent and that they have a Gaussian distribution
for their mean values. This method is interesting as it gives a good evaluation
of the error. But we do not have a probabilistic approach, and we do not have a
Gaussian distribution of the “measured” values.

In this paper, we prefer to compute the maximum error bounds on f due to
the errors on variables as it gives an exact evaluation of the error propagation.
Let f(x) be a continuous function, x be the continuous variable, and xdisc the
discrete value of x. If we choose a discretization step of 2 ·∆x we can say that for
each xdisc image of x by the discretization process, x ∈ [xdisc − ∆x, xdisc + ∆x]
(which is usually simplified by the expression x = xdisc ±∆x). We can compute
the error ∆f(x) introduced by the discretization:

f(x) = f(xdisc) ± ∆f(x) ∆f(x) = f(x ± ∆x) − f(x) (5)

We can also say that the error on f(x) is inside the interval :

∆f(x) ∈ [Min(f(x ± ∆x) − f(x)), Max(f(x ± ∆x) − f(x))] (6)

This method can also be applied with functions of multiple variables. In this
case, for a function f of n variables f(x ± ∆x, y ± ∆y, ..) has 2n solutions. The
maximum error bounds on f are:

∆f ∈ [Min(f(x±∆x, y±∆y, ..)−f(x, y, ..)), Max(f(x±∆x, y±∆y, ..)−f(x, y, ..))]
(7)

An example of this method applied to an emergency braking function is presented
in Sect. 5.2.

Step 3a - Type transformation Once the best discretization actions are
decided with regards to our goals, the CPN model may be transformed into a
symmetric net.

Let us first note that some types do not need to be transformed because they
are simple enough (e.g. enumerated types) and do not affect the state space
complexity.

When the types are more complex, two kinds of transformation are involved
in this process, that concern the value set (also called carrier set), and the
complex functions. The value set transformation results from the discretization
of all infinite domains into an enumerated domain.

A node refinement is applied to transitions that involve a complex function
on an output arc expression. As explained below and in Fig. 5, there are two
possibilities to handle this. In our method, such functions are represented by
tuples of discrete values (values of the function arguments and of the result)
that are stored in a values place. The values place is both input and output
of the refined transition, thus for any input data provided by the original input
arc(s), the values place yields the appropriate tuple with the function result.



Class
   Cx is 0..5;
   Cy is 0..6;
Domain
   D is <Cx,Cy>;
Var
   x, in Cx;
   y in Cy;

y

0

2

4

6

2 4 x
(a) (b)

result
Cy

param
Cx

values
D

<0,0>, <1,1>,
<2,1>, <3,2>,
<4,3>, <5,6>

<x>

<y>

<x,y>

<x,y>

[x=0 and y=0] or
[x=1 and y=1] or
[x=2 and y=1] or
[x=3 and y=2] or
[x=4 and y=3] or
[x=5 and y=6]

param
Cx

result
Cy

<y>

<x>

(c)

Fig. 5. Example of function discretization using a place or a transition guard

Step 3b - Modelling of complex functions in Symmetric Nets To cope
with the modelling of complex functions in Symmetric Nets (for example, the
computation of braking distance according to the current speed of a vehicle),
we must discretize and represent them either in a specific place or as a guard
of a transition. When a place is used, it can be held in an SN-module ; it then
represents the function and can be stored in a dedicated library.

Fig. 5 represents an example of function discretization. The left side (a) shows
a function that is discretized, and the right side shows the corresponding Petri
net models : in model (b), the function is discretized by means of a place, in
model (c), it is discretized by mean of a transition guard. In both cases, correct
associations between x and y are the only ones to be selected when the transition
fires. Note that in model (b) values markings remain constant.

This technique can be generalized to any function x = f(x1, x2, ..., xn), re-
gardless of its complexity. Non deterministic functions can also be specified in
the same way (for example, to model errors in the system). Let us note that:

– the discretization of any function becomes a modelling hypothesis and must
be validated separately (to evaluate the impact of imprecision due to dis-
cretization),

– given a function, it is easy to automatically generate the list of values to be
stored in the initial marking of the place representing the function, or to be
put in the guard of the corresponding transition.

The only drawback of this technique is a loss in precision compared to contin-
uous systems that require appropriate hybrid techniques [14]. Thus, the choice
of a discretization schema must be evaluated, for example to ensure that uncer-
tainty remains in a safe range.

It is also possible to model functions by using inequations in the guard of
Fig. 5(c). However, comparison between free variables break the model sym-
metries if there are any. This is why, in model of Fig. 5(c) the guard only use
comparisons between a free variable and a constant.

3.4 Verification

Our models are analysed using:



– Structural techniques (invariant computation, structural bounds, etc) on
P/T nets. Since our nets are coloured, an unfolding tool able to cope with
large systems [33] is used to derive the corresponding P/T net to compute
structural properties.

– Model checking, there exist efficient model checking techniques that are ded-
icated to this kind of systems and make intensive use of symmetries as well
as of decision diagrams. Such techniques revealed to be very efficient for this
kind of systems by exploiting their regularity [28, 5].

However, due to the complexity of such systems, discretization is a very im-
portant point. If symmetric net coloured classes are too large (i.e. the discretiza-
tion interval is too small), we face a combinatorial explosion (for both model
checking or structural analysis by unfolding). On the other hand, if the error
introduced by the discretization is too high, the property loses its “precision”
and the verification of properties may lose its significance.

This is why in Fig. 4, the discretization step needs verification constraints as
inputs from the verification step. A compromise between combinatorial explosion
and precision in the model must be found.

4 Modelling the Emergency Braking Problem

The case study presented in this paper is a subpart of an application from the
“Intelligent Road Transport System” domain. It is inspired from the European
project SAFESPOT [7]. This application is called “Hazard and Incident Warn-
ing” (H&IW), and its objective is to warn the driver when an obstacle is located
on the road. Different levels of warning are considered, depending on the criti-
cality of the situation. This section presents the “Emergency Braking module”
of the application and how it can be specified using the CPN formalism.

4.1 Presentation of the Case Study

SAFESPOT is an Integrated Project funded by the European Commission, un-
der the strategic objective “Safety Cooperative Systems for Road Transport”.
The Goal of SAFESPOT is to understand how “intelligent” vehicles and “in-
telligent” roads can cooperate to produce a breakthrough in road safety. By
combining data from vehicle-side and road-side sensors, the SAFESPOT project
will allow to extend the time in which an accident is foreseen. The transmission
of warnings and advices to approaching vehicles (by means of vehicle-to-vehicle
and vehicle-to-infrastructure communications [39, 38, 18]), will extend in space
and time the driver’s awareness of the surrounding environment.

Functional Architecture The SAFESPOT applications [4] rely on a com-
plex functional architecture. If the sensors and warning devices differ between
SAFESPOT vehicles and SAFESPOT infrastructure, the functional architec-
ture is designed to be almost the same for these two main entities of the system
providing a peer-to-peer network architecture. It enables real-time exchange of



vehicles’ status and of all detected events or environmental conditions from the
road. This is necessary to take advantage of the cooperative approach and thus
enable the design of effective safety applications.

As presented in Fig. 6, information measured by sensors is provided to the
“Data Processing / Fusion” module or transmitted through the network to the
“Data Processing / Fusion” module of other entities. This module analyses and
processes arriving data to put them on the “Local Dynamic Map” (LDM) of the
system. The “Local Dynamic Map” enables the cooperative applications of the
system to retrieve relevant variables and parameters depending on their purpose.
The applications are then able to trigger relevant warnings to be transmitted
to appropriate entities and displayed via an onboard Human Machine Interface
(HMI) or road side Variable Message Signs (VMS). In SAFESPOT, five main
infrastructure-based applications were defined: “Speed Alert”, “Hazard and In-
cident Warning”, “Road Departure Prevention”, “Co-operative Intersection Col-
lision Prevention” and “Safety Margin for Assistance and Emergency Vehicles”.
These applications are designed to provide the most efficient recommendations
to the driver.

Hazard and incident application The aim of the “Hazard and Incident Warn-
ing” application is to warn the drivers in case of dangerous events on the road.
Selected events are: accident, presence of unexpected obstacles on the road, traf-
fic jam ahead, presence of pedestrians, presence of animals and presence of a
vehicle driving in the wrong direction or dangerously overtaking. This appli-
cation also analyses all environmental conditions that may influence the road
friction or decrease the drivers’ visibility. Based on the cooperation of vehicles
and road side sensors, the “Hazard and Incident Warning” application provides
warnings to the drivers and feeds the SAFESPOT road side systems and vehi-
cles with information on new driving situations. This application is essential to
provide other applications with the latest relevant road description.

The emergency braking module The emergency braking module is one sub-
system in the “Hazard and Incident Warning” distributed application. It com-A p p l i c a t i o n c o o r d i n a t i o nT h i s n o d e ' sa p p l i c a t i o n # 1 T h i s n o d e ' sa p p l i c a t i o n # NE x t e r n a lA p p l i c a t i o n( e . g . C V I S ) L D MD a t aP r o c e s s i n g /F u s i o n
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Fig. 6. SAFESPOT High Level Architecture



municates with other subsystems. The behavior of this subsystem is significant
in the SAFESPOT system and must be analyzed.

In the case of an obstacle on the road, the emergency braking module re-
ceives/retrieves the speed, deceleration capability and the relative distance to
a static obstacle for the monitored vehicle. With these data, it will compute a
safety command to be transmitted to the driver and to other applications of the
system. Those commands represent the computed safety status of a vehicle. The
three commands (or warnings) issued by this module are “Comfort” if no action
is required from the driver, “Safety” if the driver is supposed to start deceler-
ating, and “Emergency” if the driver must quickly start an emergency braking.
This is illustrated in Fig. 7. Note that if a driver in an “Emergency” status does
not brake within one second, an automated braking should be triggered by the
“Prevent” system (which is another European project).

Petri nets are well suited to describe and analyse this type of application.
However, a part of the “Hazard and Incident Warning” application algorithm
is based on the analysis of continuous variables like vehicle speed or position of
an obstacle. Those data are part of the data flow of the system ; they are also
determinant for the control flow of the system.

Many properties can be verified using Petri nets without modelling continu-
ous variables. However, some properties require continuous variables to be mod-
elled, like those presented Sect. 4.3. Then we face a combinatorial explosion and
have to enhance the Petri net formalism as well as the modelling methodology
to enable the verification of such systems.

4.2 Mathematical Model of the Emergency Braking Module

The emergency braking module implements a strategy function to determine the
safety status of a given vehicle. This function computes the braking distance of
a vehicle from its speed and deceleration capabilities.

Let v ∈ V be the velocity (speed) of a vehicle with V ⊂ R
+. Let also b ∈ B

be the braking capability of the vehicle with B ⊂ R
+. The braking distance

function is then:

f(v, b) =
v2

2b
(8)

Let then d ∈ D be the relative distance of the obstacle to the vehicle with
D ⊂ R

+. The main algorithm of the “Emergency braking module” defines two
thresholds to determine when a vehicle goes from a “Comfort state” to a “Safety
state”, and from a “Safety state” to an “Emergency state”. Those thresholds areA d v a n c e w a r n i n g( c o m f o r t )v O b s t a c l eP r e v e n t i o n( s a f e t y ) M i t i g a t i o n( e m e r g e n c y ) C O L L I S I O Nd

Fig. 7. Emergency braking safety strategy



based on the time left for the driver to react. According to the application spec-
ification, if the driver has more than three seconds to react he is in a “Comfort
state”, then if he has less than three seconds but more than one second he is in
the “Safety state”, if he has less than one second to react, he is in the “Emergency
State”. The values of those thresholds are expressed as follows:

EB Safety =
v2

2b
+ v ∗ 3 − d (9)

EB Emergency =
v2

2b
+ v ∗ 1 − d (10)

The resulting algorithm of the strategy function can be represented as follows:

function Eb_Strategy(d,v,b){

Eb_Safety = (v^2)/(2b) + v * 3 - d;

Eb_Emergency = (v^2)/(2b) + v * 1 - d;

if (Eb_Safety < 0) then Command = ’Comfort’;

else if (Eb_Emergency < 0) then Command = ’Safety’;

else Command = ’Emergency’ endif

return Command;}

In SAFESPOT, v values are considered to be in [0, 46]m/s, b in [3, 9]m/s−2

and d in [0, 500]m. If variables are outside those sets, other applications are
triggered (this becomes out of the scope of the emergency braking module). For
example, speeds above 46m/s are managed by the “Speed Alert” application.

4.3 Required Properties

The SAFESPOT and H&IW application specifications are completed with re-
quired properties, structured following the FRAME method [22], to be satisfied
by the system. An analysis of the H&IW required properties shows that of the
47 main requirements, 18 (i.e. 38%) involve continuous space and/or time con-
straints. The method presented in this paper focuses on those properties. Here
are examples of this kind of properties for the emergency braking module:

– Property 1: commands must be appropriately activated. This can be refined
as follows.
• 1.1: When the braking distance of a vehicle is below its distance from

a static obstacle plus one second of driver’s reaction time, the H&IW
application must trigger an “Emergency” warning.

• 1.2: When the braking distance of a vehicle is below its distance from
a static obstacle plus three seconds of driver’s reaction time, the H&IW
application must trigger a “Safety” warning.

• 1.3: When multiple obstacles are present on the road, the H&IW appli-
cation must trigger the associated multiple warnings6.

6 When multiple warnings are triggered, they are filtered by the Application Coordi-
nator like shown in Fig. 6.



Fig. 8. Template Coloured Petri net for
the H&IW applications

Fig. 9. Coloured Petri net instantiated for
the Emergency Braking application

– Property 2: commands must be issued progressively stronger

• When a vehicle is approaching an obstacle, the H&IW application must
trigger the different warnings Confort, Safety, Emergency in the order
corresponding to the danger faced by the vehicle. Therefore, if a driver
does not react to the first Comfort warning, a Safety warning must
follow, and then the Emergency one.

4.4 The Coloured Petri Net Specification

Several modules in the H&IW application share the same architecture, namely
for a given process, data is retrieved from the interface. Then, a command is
computed, and sent to appropriate modules in the system. The CPN of Fig. 8 ex-
hibits this generic behaviour (i.e. the template in Sect. 3.2). Transition Get Data

has two input arcs from places Interface Call and Interface Data. Place
Interface Call is typed with PROCESSID which may be an integer subset (here
the marking is a token with value 1). Once a process is called and data is
retrieved, place Step1 carries tokens that are couples (pid,data). Transition
Process Strategy provides a command resulting from computations on data.

In Fig. 9 this generic schema is instantiated for the Emergency Braking Ap-
plication (so, generic data and generic command become resp. of type EB DATA

and EB COMMAND). Since data are Distance, Velocity, and Braking Factor:
EB DATA = product Distance * Velocity * Braking Factor.
Data modelling physical entities are measured with a possible measurement

error and are usually represented and computed in R
∗ in physics computations.

For the CPN specification, we can keep this typing for expressivity sake, while



it is clear that it is not usable in practice (we would use integers for Petri nets
tools and float in programming languages).

The EB COMMAND type has three possible values related with the three levels of
command or warning, therefore EB COMMAND = Comfort | Safety | Emergency.
The appropriate command results from the EB Strategy function computation.

5 Discretization of the Problem

Discretization raises several issues. We propose a way to cope with these issues
and apply our solutions to the emergency braking example.

5.1 Implementing Complex Functions in Symmetric Nets

Starting from the CPN model we use the methodology presented in Sect. 3.

First, CPN types must be transformed into discrete types. Using the equal
width interval binning discretization method (presented in Sect. 3.3) with a
number of kv, kb and kd intervals for each variable we obtain a mesh of kv ×
kb × kd regions (as defined in definitions 32 and 31) in the resulting discretized
function. The resulting sets for variables d, v and b are then composed of k
ordered elements. For example, with k = kv = kb = kd = 10 the resulting
discretized type of v is [0, 4.6, 9.2, ..., 46] and the discretized braking function
contains 103 regions. With k = 100, the domain of v is [0, 0.46, 0.92, ..., 46] and
the mesh is composed of 106 regions.

Sect. 3.3 presents two solutions to model complex functions in Symmetric
Nets. We select solution b in Fig. 5 because it is more efficient when comput-
ing the symbolic state space. Therefore we add place EB Strategy Table in
the Symmetric Petri net (Fig. 10), and the initial associated marking that is
presented in Sect. 5.4.

We chose a simple and generic discretization method that does not take into
account the specificity of functions to be discretized. Other discretization meth-
ods like those using variable intervals can reduce the number of markings with
the same level of accuracy in the resulting discretized function. These aspects
are discussed in sections 7.1 and 7.2.

Finally, depending on the analyzed properties, it is also possible to compute
and use the equivalence classes. This aspect is discussed in Sect. 6.2.

5.2 Computation of the Error Propagation in Symmetric Nets

As presented in Sect. 3, we compute the precision error introduced by the dis-
cretization operation. The resulting error in the computation of the “Threshold”



Discretization par. v = 13m/s, b = 8m/s−2, v = 36m/s, b = 4m/s−2,
k / card(EBData) d = 500m d = 100m

10 / 103 ∆Eb Saf ∈ [−70.83m, 74.84m] ∆Eb Saf ∈ [−118.9m, 144.5m]
∆Eb Emerg ∈ [−61.64m, 65.64m] ∆Eb Emerg ∈ [−109.7m, 135.3m]

20 / 8 ∗ 103 ∆Eb Saf ∈ [−35.87m, 36.81m] ∆Eb Saf ∈ [−61.97m, 68.28m]
∆Eb Emerg ∈ [−31.27m, 32.26m] ∆Eb Emerg ∈ [−57.37m, 63.68m]

50 /12.5 ∗ 103 ∆Eb Saf ∈ [−14.45m, 14.61m] ∆Eb Saf ∈ [−25.47m, 26.47m]
∆Eb Emerg ∈ [−12.62m, 12.77m] ∆Eb Emerg ∈ [−23.63m, 24.63m]

100 /106 ∆Eb Saf ∈ [−7.25m, 7.29m] ∆Eb Saf ∈ [−12.85m, 13.10m]
∆Eb Emerg ∈ [−6.33m, 6.37m] ∆Eb Emerg ∈ [−11.93m, 12.19m]

Table 1. Error bounds for different discretization parameters

is:

∆Eb Safety = Eb Safety(v ± ∆v, b ± ∆b, d ± ∆d) − Eb Safety(v, b, d) (11)

∆Eb Safety = (
(v ± ∆v)2

2(b ± ∆b)
+ 3(v ± ∆v) − (d ± ∆d)) − (

v2

2b
+ 3v − d) (12)

∆Eb Safety =
(v ± ∆v)2

2(b ± ∆b)
−

v2

2b
± 3∆v ± ∆d (13)

For example, let us consider (cf. Table 1) a classic private vehicle driving at
v = 13m/s (i.e. 50km/h), on a dry road (i.e. b = 8m/s2), at d = 500m from an
obstacle. If we consider k = 100 intervals and an error of respectively ±0.45m/s
for v, ±0.06m/s2 for d and ±5m for p. Then we obtain:7

∆Eb Safety ∈ [−7.25m, +7.29m] ∆Eb Emergency ∈ [−6.33m, +6.37m]
For the same vehicle at 100 meters from the obstacle, driving at v = 36m/s

(i.e. 130km/h), on a wet road (i.e. b = 4m/s2), we obtain:
∆Eb Safety ∈ [−12.85m, +13.10m] ∆Eb Emergency ∈ [−11.93m, +12.19m]
Those results provide an information on the precision of the Symmetric Net

properties. Table 1 gives some error bounds computed from four values for pa-
rameter k. As expected, precision of computed thresholds depends on k. However,
precision also depends on the values of variables. For example, values of v and
b are a determinant for error bound computation. Exploiting those precisions,
to validate the Symmetric Net model and its properties, requires to consider
carefully those values.

5.3 Validating the Discretization in Symmetric Nets

Discretization of variables and function in the Symmetric Net model in Fig. 10
introduces imprecision. Depending on properties that need to be verified, this
imprecision must be considered. For example, properties presented Sect. 4.3 can

7 In Table 1, ∆Eb Saf and ∆Eb Emerg stand for ∆Eb Safety and ∆Eb Emergency respec-
tively.



Class 

   ProcessId is 1..NBT;

   Distance is  DOMAIN_DEFINITION;

   Velocity is  VELOCITY_DEFINITION;

   Braking_Factor is BFACTOR_DEFINITION;

   EBCommand is [Comfort, Safety, Emergency] ;

Domain 

   EBData is <Distance, Velocity, Braking_Factor> ;

   EBInArgs is <ProcessId, Distance, Velocity, 

                            Braking_Factor > ;

   EBStgyTable is <Distance, Velocity,

                                  Braking_Factor,

                                  EBCommand> ;

   EBOutArgs is <ProcessId, EBCommand> ;

 Var 

   pid in ProcessId;

   eb_cmd in EBCommand;

   d in Distance;

   v in Velocity;

   b in Braking_Factor; 

EB_Process_Strategy EBStgyTable

EB_Strategy_Table

ProcessId

Interface_Answer

EBOutArgs
EB_Command_Computed

<ProcessId.all>

ProcessId
Interface_Call

EB_Actuation

EBInArgs

EB_Data_Retrieved

EB_Get_data

<Distance.all, Velocity.all,
Braking_Factor.all>

EBData

Interface_Data

EBCommand

Interface_Command

<eb_cmd>

<pid>

<pid,d,v,b>

<d,v,b,eb_cmd>

<pid,d,v,b>

<d,v,b,eb_cmd>

<pid, eb_cmd>

<d, v, b>

<pid,eb_cmd>

<pid>

Fig. 10. Symmetric Petri net of the Emergency Braking module (marking of place
EB Strategy Table is not displayed for sake of place)

be verified using CTL (Computation Tree Logic) [21] formulae. With a dis-
cretization factor of k = 100 values on input variables (cf last line of Table 1),
Property 1 (in Sect. 4.3) can be verified with an accuracy smaller than ±7, 3m
on a relative distance, for a velocity of 13m/s on a dry road (b = 8m/s−2).

If the introduced imprecision is acceptable with regards to the properties to
be verified, then the system designer can state that the discretization is valid
for those properties. Otherwise, a better accuracy may be required and a new
discretization must be done.

It is also possible to integrate the imprecision in the CTL formulae. To do so,
more constraining values of input variables must be chosen (i.e. a higher speed,
a lower braking factor or a closer obstacle) in the CTL formulae. In our case,
the simplest way is to choose a lower value of obstacle position that takes into
account the discretization error. For example, the CTL formula:
AG((EB Data Retrieved == <13,8,500>) => AX(EB Cmd Cpt==<Safety>))

becomes:
AG((EB Data Retrieved == <13,8,(500-7.29)>) => AX(EB Cmd Cpt==<Safety>)).

In some cases, it is possible to compute the discretization of input variables
depending on the required precision on the function (see Sect. 7.2).

5.4 Transformation to Obtain the Symmetric Net

This section deals with the transformation of the CPN into a Symmetric Net.
First, we present the general principles that are then applied on models dedicated
to the verification of the two properties defined in Sect. 4.3.

Computing Discretization Our objective is to get a dedicated Symmetric net
from the CPN of Fig. 9. To do so, we must: i) discretize continuous types and,



ii) generate the tables corresponding to the functions to be modeled. The result
is presented in Fig. 10.

The type EB DATA in Fig. 9 is associated to EBData in Fig. 10, that is a carte-
sian product of three discrete types: Distance, Velocity and Braking Factor.
In Fig. 10, the definition of these types is not represented because it depends on
the discretization criteria (e.g. the number of values one can handle).

As presented in Sect. 3.3, the complex function EB Strategy of Fig. 9 is
associated to the place EB Strategy Table in Fig. 10. Its initial marking is a
conversion table for the discretized function. The binding between variables d,
v, b in inputs arcs of transition EB Process Strategy enables the selection of
the appropriate command in variable eb cmd.

The marking stored in EB Strategy Table is generated from the discretized
values of domains Distance, Velocity and Braking Factor by means of the
EB Strategy function presented in Sect. 4.2.

The model to verify property 1 (Sect. 4.3) There is no need to change
anything to verify property 1 in the model of Fig. 10.

The initial marking of place Interface Data must provide any possible value
for inputs since we aim at verifying that all conditions lead to appropriate com-
mands as stated in properties 1.1 and 1.2. This is generated by the tuple of broad-
cast functions <Distance.all,Velocity.all,Braking Factor.all>. If we consider sev-
eral parallel threads to handle several obstacles (see property 1.3 in Sect. 4.3),
it is of interest to consider a value greater than one for constant NBT in the
declaration, thus generating several tokens in place Interface Call. The initial
marking of place Interface Call is a set of ProcessId (obtained by the broad-
cast constant <ProcessId.all>). This does not add much complexity in the model
and does not invalidate the computation of error propagation. Thus, multiple
parallel accesses stated in property 1.3 can be concretely verified.

The model to verify property 2 (Sect. 4.3) This property involves interac-
tions with a functional environment (runtime), and a person (a passive driver).
Fig. 11 presents a model on which a passive driver has been added on the right,
and part of the functional environment (the runtime is reduced to a feedback
loop) on the left. This model allows to verify properties on the module dynam-
icity, like the fact that, if a driver does not react, the different warning levels
(Comfort Safety Emergency) will be issued while the situation becomes more
and more dangerous (see Sect. 4.3).

Conclusion This section shows the modelling of some properties to be checked
on the emergency braking application. Our models are based on the template
proposed in Fig. 9 and we introduce some variations to adapt the template to
the verification of properties 1 and 2.

These variations have an impact on the verification complexity. For example,
the reachability graph for the second model (with the passive driver) grows
linearly with the discretization of the Distance colour domain. On the contrary,
the complexity of the first model grows much faster.

In these examples, the feedback loops only contain discrete variables (i.e. a
command or the PID), but no discretized continuous variables. This avoids the
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Fig. 11. Model of Fig. 10 enriched with a passive driver (declaration part and marking
of place EB Strategy Table is the one of the model in Fig. 10)

accumulation of errors introduced by the discretization. If a discretized variable
is involved in a feedback loop, this entails more constraints on the discretization,
and the model should be made in such a way that the errors are not infinitely
accumulated.

The next section provides some analysis results. We focus on the first model
since it is more challenging with regards to the combinatorial explosion problem.

6 Net Analysis

This section briefly presents the analysis experimentation performed on the sym-
metric net of Fig. 10 with various configurations.

The use of a discretization method with symmetric nets generates complex
models with large markings. It is important to know the consequences on the
net analysis and model checking tools.

Objectives The objectives of this analysis are to analyse the net properties as
well as to overcome sources of combinatorial explosion.

Experimental method Fig. 12 shows the various techniques that can be used
for checking properties. Structural analysis (place invariants, bounds, etc.) canC P N m o d e l S N m o d e lC o l o u r e dI n v a r i a n t s P / T n e tm o d e l S t a t e S p a c e S y m b o l i cS t a t e S p a c e

Fig. 12. Overview of the analyses



be performed on the unfolded place/transitions nets as proposed in Sect. 2.2.
Coloured invariants can also be computed directly from the coloured net. Model
checking can be performed either on the state space or the symbolic state space
according to the tool chosen.

Technical aspects The analysis of the Petri Net is a complex operation that
requires different transformations of the model like unfolding or reduction. Var-
ious tools were used for the analysis. First CPN models were designed with
CPN-Tools [17], then symmetric nets were designed using Coloane, an interface
for CPN-AMI [37] and PetriScript (a script language to design SN) to generate
initial markings. CPN-AMI is used for the analysis of symmetric nets.

6.1 Structural Analysis

We first used structural analysis techniques because they do not require the state
space construction and are thus of more reduced complexity.

Symmetric net analysis We computed coloured invariant on the SN, ex-
perimenting with various discretizations. The only computed invariant involves
place “EB Strategy Table”, as expected (its marking is stable by definition).
Discretization has no significant impact on the memory used for the computa-
tion.

Structural Reduction By applying structural reduction on Petri nets [2, 23,
25], it is possible to reduce the net of Fig. 10 into the one of Fig. 13. They
are structurally equivalent when we want to check that all situations lead to a
planned situation in the system with regards to property 1. The new net avoids
most of the useless interleaving when the controller is simultaneously executed
by several threads.

The reduced net of Fig. 13 has the same declaration as the one of Fig. 10.

Analysis on unfolded nets Discretization has an impact on the memory re-
quired to compute unfolded nets. In fact, the size of the EB Data domain has a
cubic growth and thus impacts the resulted P/T net. For example, the number

EB_Process_Strategy EBStgyTable
EB_Strategy_Table

EB_Command_Computed
EBOutArgs

<ProcessId.all>
ProcessId

Interface_Call

<Distance.all, Velocity.all,
Braking_Factor.all>

EBData
Interface_Data

<d,v,b,eb_cmd>

<d,v,b,eb_cmd>
<pid, eb_cmd>

<pid> <d, v, b>

Fig. 13. Reduced net from the one of
Fig. 10 (without declaration and marking
for EB Strategy Table)
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Fig. 14. Evolution of the symbolic state
space for the net of Fig. 13 when discretiza-
tion and involved threads varies



of P/T (np) places grows with np = 5 ∗ (k)3 + 8, where k is the discretiza-
tion parameter (Sect. 3.3). The CPN-AMI unfolder to P/T nets confirms this
formula.

We also proved by unfolding that both nets (Fig. 10 and 13) are bounded.
Since the marking has no impact on the validity of structural properties, the
analysis is relevant and shows the interest of our methodology.

6.2 Behavioural Analysis

PROD [42] and GreatSPN [13], two model checkers integrated in CPN-AMI [37],
were used to complete the behavioural analysis.

State Space Computation According to our tests, the complexity of state
space generation is similar to that of unfolding for both memory and time. The
symbolic state space generated with GreatSPN shows some (minor) optimization
compared to explicit model checking generated by PROD. This is probably due
to the lack of symmetries in the marking of place EB Strategy Table. This
should be overcome using two techniques: i) the introduction of test arc in SN,
ii) a dedicated algorithm to enable the model checker to detect places with a
stable marking.

The complexity of the binding for transition EB Process Strategy is:

∑

i=1..NbP

Ci
IDM (14)

where NbP = |ProcessId| (the number of values in type ProcessId) and
IDM = |M0(Interface Data)| (the initial number of tokens in place Inter-
face Data). Since M0(Interface Data)) contains |Distance| × |V elocity| ×
|Braking Factor| tokens, this net quickly generates a large state space, requiring
dedicated model checking based analysis.

Therefore, we were not surprised when PROD could generate the state space
only for a limited number of threads or a very small number of values in Distance

and Velocity types (for our experiments, we fixed Brakinf Factor to 2 values,
corresponding to average braking factors for dry and wet roads). This is due to
the fact that an explicit representation of state spaces is stored in memory.

Some measures provided by experimentations on GreatSPN are provided in
Fig. 14. No value is presented when calculus reached a time-out of 24 hours.

Fig. 14 shows that GreatSPN copes better with the complexity induced by
the parallelism when several threads access the Emergency Braking module (we
use the automatic detection of symmetries presented in [41]).

Surprisingly, some discretizations could not be computed for more than 2
threads (and with more values, for 2 threads) because of CPU more than memory.
This is due to the complexity of the binding of transition EB Process Strategy
that is only symmetric for domain ProcessId. As an example, the number of
bindings for EB Process Strategy (computed using formula 14) in the model
with 7 values for domains Distance and Velocity is:

C1
98 + C2

98 + C3
98 + C4

98 = 3 769 227 (15)
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Fig. 15. semantic equivalence classes and surfaces from equations 9 and 10

since places Interface Data and Interface Call initially holds 98 and 4 to-
kens. The excessive execution time is due to the canonization function that is
required by the generation of the symbolic state space. Memory consumption
never exceeded 100Mbyte.

6.3 Coping with the Complexity Problem

Our discretization approach allows us to reduce infinite problems to discrete
ones. However, verification for a reasonable discretization still raises some prob-
lems. This section proposes some hints to cope with such problems.

The first solution we propose consists in a specific modelling technique that
can be used for reachability analysis only. The second one resides in the integra-
tion of dedicated techniques in model checkers.

Semantic Behavioural Equivalence Classes In SN, the symbolic state space
is computed when equivalence classes are provided. They are either defined by
the system modeller in colour domains or computed automatically from the
SN structure [41]. Here, the structure of our models does not comply with the
computation of such equivalence classes.

However, solutions of the equations 9 and 10 define equivalence classes in
the system by defining limits between the different situations of the system:
“Comfort”, “Safety”, “Emergency”. Fig. 15 shows the five equivalence classes
we deduce from the two surfaces computed from the equations of the system.

Thus, we may consider one element per equivalence class in the state space.
Projection of these elements on the involved dimensions allows us to reduce
colour domains to a very small set of values. In the net of Fig. 10, we may
consider only five points in the state space of the system, thus leading to five
values in the distance, velocity and braking factor colour domains.
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EB_Process_Strategy
  pid = 1

  d = d25_5

  v = v5_0

  b = b5_5

  eb_cmd = Comfort

EB_Process_Strategy
  pid = 1

  d = d25_1

  v = v7_0

  b = b6_0

  eb_cmd = Safety

EB_Process_Strategy
  pid = 1

  d = d20_0

  v = v8_0

  b = b4_5

  eb_cmd = Emergency

EB_Get_data

  d = d68_3

  v = v24_0

  b = b6_5

  pid = 1

EB_Get_data

  d = d50_0

  v = v35_0

  b = b7_0

  pid = 1

EB_Get_data

  d = d25_5

  v = v5_0

  b = b5_5

  pid = 1

EB_Get_data

  d = d25_1

  v = v7_0

  b = b6_0

  pid = 1

EB_Get_data

  d = d20_0

  v = v8_0

  b = b4_5

  pid = 1

EB_Actuation

  pid = 1

  eb_cmd = Emergency

EB_Actuation

  pid = 1

  eb_cmd = Safety

Deduced domains

Distance is [ d20_0, d25_1, d25_5, d50_0, d68_3 ];

Velocity is [ v5_0, v7_0, v8_0, v24_0, v35_0 ];

Braking_Factor is [ b4_5, b5_5, b6_0, b6_5, b7_0 ];

Marking for Interface_Data

<d68_3, v24_0, b6_5>,

<d20_0, v8_0, b4_5>,

<d50_0, v35_0, b7_0>,

<d25_1, v7_0, b6_0>,

<d25_5, v5_0, b5_5>

Marking for EB_STrategy_Table

<d68_3, v24_0, b6_5, Emergency>,

<d20_0, v8_0, b4_5, Emergency>,

<d50_0, v35_0, b7_0, Safety>,

<d25_1, v7_0, b6_0, Safety>,

<d25_5, v5_0, b5_5, Comfort>

Fig. 16. Reduced state space for the colour domains and place marking defined by
means of the semantic equivalent classes

This discretization is relevant for reachability properties only but it remains
correct since all the possible equivalence classes in the state space are reachable.
Fig. 16 shows the reduced state space for the model of Fig. 10.

We name such equivalence classes semantic because, contrary to the classical
equivalence classes in SN, they are computed from the definition of the systems
and from its structure.

Building Dedicated Model Checkers It is clear that for such systems dedi-
cated model checkers should be designed. Based on our experience, let us identify
some useful feature that could cope with the combinatory explosion problem:

1. The use of partial order techniques like in [6]: this is a way to avoid the
exploration of redundant paths.

2. Check for places with a stable marking: this is a typically useful optimization
when techniques such as decision diagrams like BDD [9] are used. If vari-
ables encoding places with a stable marking are place on top of the decision
diagram, then the marking is represented only once. For example, PROD
stores place EB STrategy Table and its huge marking was stored for each
state in the state space.

3. The use of high-level decision diagrams such as DDD [15], MDD [32] or
SDD [16] can also help. These decision diagrams directly encode discrete
data (for DDD and MDD) and can handle hierarchy (for SDD). These enable
very efficient state space encoding techniques8 by means of high-level decision
diagrams. In particular, this is a way to cope with the previous optimization.

4. The use of recent extension to symmetric Petri Nets where tokens can hold
bags themselves [31]. Such an extension allows to fire symbolically transitions
with a similar structure than the one of EB Process Strategy [24].

5. It was shown that GreatSPN could be parallelized in an efficient way [26].
Then, generation of the state space is distributed over a set of machines, thus

8 The term symbolic model checking is used to refer to this diagram-decision based
technique. This is different from the symbolic state space.



Discretization par. v = 13m/s, b = 8m/s−2, v = 36m/s, b = 4m/s−2,
d = 500m d = 100m

kv = 114, kb = 73 ∆Eb Saf ∈ [−6.167m, 6.203m] ∆Eb Saf ∈ [−12.09m, 12.40m]
kd = 120
card(EBData) < 106 ∆Eb Emerg ∈ [−5.367m, 5.403m] ∆Eb Emerg ∈ [−11.29m, 11.60m]

Table 2. Discretization with optimized criteria

allowing the use of more CPU (of interest since canonization in GreatSPN
is CPU consuming) and memory.

Unfortunately, these techniques are not yet implemented, or implemented as
prototypes only. However, we think they should allow the analysis of discretized
systems in the future.

7 Some Perspectives about Discretization

We have described and applied a discretization method to cope with hybrid
systems and handle continuous variables in a safe and discrete manner. In this
section, we open a discussion on several aspects.

7.1 Optimized Discretization Parameters

The methodology presented in this paper is based on the use of a discretization
algorithm to discretize continuous variables. In Sect. 5.2, we used “equal width
interval binning” algorithm because it is simple to implement. This algorithm,
like many others, relies on discretization parameters that can be optimized for
a given set of continuous variables and functions.

However, in the emergency braking module example, we may study the par-
tial derivates of the error on the two thresholds (∆EB Safety and ∆EB Emergency).
We then find that variables v and d are more influent than b. For example, the
partial derivate of the error on the EB Safety threshold (equation 13) with
respect to the variable v is:

∂∆Eb Safety

∂v
=

v ± ∆v

b ± ∆b

−
v

b
(16)

This allows to find optimized discretization parameters considering the respec-
tive influence of each involved variable. To do so, parameters for each discretized
variable are considered depending on its influence on error propagation.

Table 2 presents the resulting error when discretization parameters are opti-
mized using partial derivatives9. It shows that we can reduce the resulting error
of about 10% with discretization parameters based on partial derivatives.

9 ∆Eb Saf and ∆Eb Emerg stand for ∆Eb Safety and ∆Eb Emergency respectively.



The study of the best discretization method and parameters for a given set of
continuous variable and function is a complex problem that may give interesting
results. It is a promising field for future work on optimization of the methodology
presented in this paper.

7.2 Tuning the Discretization

It is of interest to compute the discretization intervals of discretized types (here
kb, kv and kd) according to the maximum error tolerated on one type involved
in a property where error must be bounded a priori.

Let us consider as an example the braking distance function (8) presented
Sect. 4.2. It is possible to compute the discretization intervals of variables v and
b, based on the accuracy required for the function ∆f . Let ±∆f be the tolerated
error on f , and ±∆v, ±∆b be the resulting errors on v and b. Using the error
bounds propagation as presented Sect. 3.3 we get:

±∆f =
(v ± ∆v)

2

2 ∗ (b ± ∆b)
−

v2

2 ∗ b
(17)

We then obtain10:

∆b = −
2 ∗ b2 ∗ ∆f − 2 ∗ b ∗ ∆v ∗ v − b ∗ ∆2

v

2 ∗ b ∗ ∆f + v2
(18)

and two solutions for ∆v that are a little bit more complex.

Let vmin, vmax, bmin and bmax be the bounds of v and b. The cardinality of
V and B sets are:

Card(V ) =
vmax − vmin

2 ∗ ∆v

Card(B) =
bmax − bmin

2 ∗ ∆b

(19)

Now, consider that we want the same cardinalities for V and B colour sets
(kb = kv). We obtain11:

∆v =
(vmax − vmin)∆b

bmax − bmin

(20)

Using the value of ∆v of equation (20) in equation (18), it is now possible to
compute ∆b from the desired ∆f .

For only two variables, this method is complex as it gives multiple solutions
that need to be analyzed to choose the appropriate solutions. However, it pro-
vides a way to compute the discretization intervals of input variables depending
on the desired output error.

10 We intentionally removed the ± operator to increase readability.
11 Note that it is possible to choose another factor between Card(V) and Card(B) as

explained in Sect. 7.1



8 Conclusion

This paper proposes a way to integrate continuous aspects of complex speci-
fications into a discretized Petri Net model for model checking purpose. Our
approach takes place in the context of Intelligent Transport Systems and, more
precisely, the management of emergency braking when an obstacle is identified
on the road.

Discretization methods rely on the equations describing the problem. In our
work, these equations come from the physical model interacting with the system.
It is crucial for engineers to evaluate the quality of the proved properties and
their impact on the system verification.

To this end, we compute a discretized abstraction from these equations. The
abstraction quality is then evaluated with regards to the properties to be checked
This is a key point in modelling and evaluating a system by means of formal
specification. Typically, imprecision raised by discretization is corrected by either
applying a more precise discretization or adding constants in formulas expressing
properties to be checked.

These equations are attached to a Coloured Petri net (CPN) template. Dis-
cretization is proposed to provide a finite model, even if large. This CPN is
then transformed into a symmetric net (SN) to take advantage of the dedicated
verification techniques. Analysis is performed on the SN.

Although the analysis performed on our example remains limited by the
combinatorial explosion, we can extract the main properties (boundness, reach-
ability properties) when colour domains are of reasonable size. Let us note that
without discretization, evaluation of such continuous systems by means of model
checking techniques is still an open issue.

In the context of a SAFESPOT application, several modules run in parallel
and may introduce more continuous types and variables. In particular, experi-
menting propagation of discretization constraints between different modules need
a particular attention. Future work will then have to evaluate how a larger num-
ber of variables and constraints could be managed. We must also investigate to
cope with several modules at a time.

In our methodology, several discretization algorithms can be applied. As a
first trial, we experimented a simple algorithm but other ones based on non-
uniform discretization intervals are promising. These others discretization tech-
niques might introduce new constraints in formal verification and in error prop-
agation computation but it is an interesting field in the future.

Finally, the notion of semantic behavioural equivalences extracted from the
equations and injected in the specification by means of initial marking is of in-
terest. It may help in tackling the combinatorial explosion when several modules
are considered for reachability analysis. Exploitation of such information from
the problem, when possible, seems the most interesting perspective for future
work on this methodology.

Acknowledgements We thank the anonymous referees for their detailed and
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