
A discretization method from coloured to symmetric nets:
application to an industrial example

FabienBonnefoi
DSO/DSETI,

Cofiroute,
6 - 10 rue Troyon,

92310 Sèvres, France
Fabien.Bonnefoi@cofiroute.com

ChristineChoppy
LIPN, CNRS UMR 7030,

Université Paris XIII,
99 av. J-B Clément,

93430 Villetaneuse, France
Christine.Choppy@lipn.univ-paris13.fr

FabriceKordon
LIP6 - CNRS UMR 7606,
Université P. & M. Curie,

4 Place Jussieu,
75252 Paris Cedex 05, France
Fabrice.Kordon@lip6.fr

1 Introduction

Future supervision systems tend to be distributed and at least partially embedded. Distribution brings a
huge complexity and then, a strong need to deduce possible (good and bad) behaviours on the global system,
from the known behaviour of its actors. This is crucial sincemission critical or life critical missions are more
and more supervised by such systems. Intelligent TransportSystems (ITS) are a typical example: more and
more functions tend to be integrated in vehicles and road infrastructure.

Moreover, in many cases (like ITS), physical constraints are part of the system description. Analysis tech-
niques based on discrete models must integrate such constraints : we then speak ofhybrid systems.

So, a major trend in formal analysis is to cope with such systems. This raises many issues in terms of
analysis complexity. Some techniques are dedicated to continuous analysis such as algebraic approaches like
B [1]. However, such approaches are difficult to set up and most industries prefer push-button tools.

Model checking easily offers such push-button tools but does not cope well with continuous systems. Most
model checking techniques deal with discrete (finite) systems. Thus, management of hybrid systems is not easy
or leads to potentially infinite systems that are difficult toverify (for example, management of continuous time
requires much care, even to only have decidable models). Hybrid Petri Nets [15] might be a solution to model
and analyze hybrid systems but no tool is available to test neither safety nor temporal logic properties [11].

In this paper, we propose a methodology to handle hybrid systems with model checking on Petri Nets and
algebraic methods. Our methodology is based on transformations from Coloured Petri Nets (CPN) [25, 26] to
Symmetric Petri Nets (SN) [9, 7].

CPN allow an easy modelling of the system to be analyzed. SN are of interest for their analysis because of
the symbolic reachability graph that is efficient to represent the state space of large systems. Moreover, since
SN only offer a limited set of operations on colours, transformation from CPN requires much care from the
designer as regards the types to be discretized.

Our methodology also addresses an important question: whatis the impact of discretization on the precision
of verification? As in scientific computing, the discretization process may generate “precision errors” that
could turn a given verified property into a wrong one. In that case, the property to be verified might have to be
transformed to take into consideration such precision errors.

Section 2 briefly recalls the notions of CPN, SN and abstraction/refinement, type issues. Our methodology
which involves modelling, discretization and verificationis presented in Section 3, and we show in Section 4
how we model our Emergency Braking application. The variousissues regarding discretization on our case
study are detailed in Section 5, and issues on net analysis are presented in Section 6. Some open issues are
discussed in Section 7 before a conclusion (Section 8).

2 Building Blocks

This section presents the building blocks from the state of the art used to set up our transformation method-
ology.

2.1 Coloured Petri Nets

Coloured Petri nets [25, 26] are high level Petri nets where tokens in a place carry data (or colours) of a
given type. Since several tokens may carry the same value, the concept of multiset (or bag) is used to describe
the marking of places.

In this paper, we assume the reader is familiar with the concept of multisets. We thus recall briefly the
formal definition of coloured Petri nets as in [26]. It shouldbe noted however that the types considered for the
place tokens may be basic types (e.g. boolean, integers, reals, strings, enumerated types) or structured types –
also called compound colour sets – (e.g. lists, product, union, etc.). In both cases, the type definition includes
the appropriate (or usual) functions.

Different languages were proposed to support the type definition for coloured Petri nets (e.g. algebraic
specification languages as first introduced in [33], object oriented languages [5]), and an extension of the
Standard ML language was chosen for CPN Tools [13]. As always, there may be a tradeoff between the
expressivity of a specification language, and efficiency when tools are used to compute executions, state graphs,
etc. If expressivity is favored, it could be desirable to allow any appropriate type and function, while when tools
should be used to check the behaviour and the properties of the system studied, the allowed types and functions
are restricted (as the language allowed for CPN Tools or as inSymmetric Nets presented in Section 2.2). Here,
we want to allow a specification language that fits as much as possible what is needed to describe the problem
under study, and then show how the specification is transformed so as to allow computations and checks by
tools.

In the following, we refer toEXPRas the set of expressions provided by the net inscription language
(net inscriptions are arcs expressions, guards, colour sets and initial markings), and toEXPRV as the set of
expressionse∈ EXPRsuch thatVar[e] ⊆V.

Definition 2.1. A non-hierarchical coloured Petri net CPN [26] is a tuple
CPN= (P,T,A,Σ,V,N,C,G,E, I) such that:

1. P is a finite set of places.

2. T is a finite set of transitions such that P∩T = /0.

3. A⊆ P×T ∪T ×P is a set of directed arcs

4. Σ is a finite set of non empty colour sets (types).

5. V is a finite set of typed variables such that Type[v] ∈ Σ for all variables v∈V.

6. C : P→ Σ is a colour set f unction assigning a colour set (or a type) to each place.

7. G : T → EXPRV is a guard function assigning a guard to each transition suchthat Type(G(t)) = Bool,
and Var[G(t)] ⊆V, where Var[G(t)] is the set of free variables of G(t).

8. E : A → EXPRV is an arc expression f unction assigning an arc expression toeach arc such that
Type(E(a)) = C(p)MS, where p is the place connected to the arc a.

9. I : A → EXPRV is an initialisation f unction assigning an initial markingto each place such that
Type(I(p)) = C(p)MS.

As explained in Section 3, the first step of our methodology isto produce a CPN model for the application
under study. The next step is a transformation motivated by the discretization of continuous functions to obtain
a symmetric net.

2.2 Symmetric Nets

Symmetric nets1 were introduced in [9] and [7], with the goal of exploiting symmetries in distributed
systems to provide a more compact representation of the state space.

1Symmetric netswere formerly known asWell-Formed nets, a subclass ofHigh-level Petri nets. The new name was chosen in the
context of the ISO standardisation of Petri nets [21].

The concept of symmetric nets is similar to the coloured Petri net one. However, the allowed types for the
places as well as allowed colour functions are more restricted. These restrictions allow us to compute symme-
tries and obtain very compact representations of the state space, enabling the analysis of complex systems as
in [22].

Basically, types must be finite enumerations and can only be combined by means of cartesian products.
Allowed functions in arc valuation are: Id, successor, predecessor and broadcast (that generates one copy of
any value in the type). These constraints affect points 4, 6,7, 8, 9 in Definition 2.1.

Class
 P is 1..PR;
 Val is 1..V;
Domain
 D is <P,Val>;
Var
 p in P;
 v, v2 in Val;

Mutex•

out
P

<P.all>

InCS

compute
D

outCS

CR
Val

<Val.all>

<v>

<p>

<p, v>

<p, v>
<v>

<p>

Figure 1: Example of Symmetric Net

The Symmetric net in Figure 1 represents a class of threads (identified by an identity in typeP) accessing
a critical resourceCR. Threads can get a value within the typeVal from CR. ConstantsPR andV are integer
parameters for the system. The class of threads is represented by placesout andcompute. Placecompute
corresponds to some computation on the basis of the value provided byCR. At this stage, each thread holds
a value that is replaced when the computation is finished. Place Mutex handles mutual exclusion between
threads and contains token with no data (”black tokens” in the sense of the Petri Net standard [23]). Placeout
initially holds one token for each value inP (the marking is then denoted< P.all >) and placeCR holds one
value for each value inVal.

Verification of properties can be achieved either by a structural analysis, on the symbolic reachability graph
(model checking), or on the unfolded associated Place/Transition (PT) net (model checking as well as structural
properties).

2.3 Transformation, abstraction and refinement

Abstraction and refinement are part of the use of formal specifications. While abstraction is crucial to
concentrate on essential aspects of the problem to be solved(or the system to be built), and to reason about
them, more elaborate details need to be further introduced in the refinement steps. A similar evolution is
taking place when a general pattern or template is established to describe the common structure of a family of
problems, and when this template is instantiated to describe a single given problem.

Three kinds of refinement for coloured Petri nets are introduced in [28, 29], the type refinement, the node
refinement and the subnet refinement. The idea for these refinements to be correct is that behaviours should be
preserved, and to any behaviour of a refined net it should be possible to match a behaviour of the abstract net.

We have here another motivation that is raised by the use of tools to check the behaviour and properties
of the model, and that may involve the discretization of somedomains so as to reduce the number of possible
values to consider in the state space. It thus involves a simplification of some domains that may be considered
as an abstraction.

3 Methodology for Discretization

This section presents our methodology to model and analyse acomplex system. We first give an overview
of the approach and then detail its main steps and the involved techniques.

3.1 Overview of the Methodology

Figure 2 sketches our methodology. It takes as input a set of requirements structured following the FRAME
method [20]. It is thus divided in two parts:

• thespecificationdescribes the system (we only consider in this work the behavioural aspects),

• therequired propertiesestablish a set of assertions to be verified by the system.

S p e c i fi c a t i o nR e q u i r e dp r o p e r t i e s M o d e l l i n g C P N m o d e lC P Np r o p e r t i e s D i s c r e t i z a t i o n S N m o d e lS N p r o p e r t i e s F o r m a lV e r i fi c a t i o nc o n t i n u o u s f u n c t i o n sp r e c i s i o n o n p r o p e r t i e s v e r i f i c a t i o n c o n s t r a i n t s
A n a l y s i s f e e d ? b a c k

Figure 2: Overview of our methodology

Once the specification written using “classical” techniques, the system is modelled using high-level Petri
Nets (CPN) that allow one to insert complex colour functionssuch as one involving real numbers. These
functions come from the specifications of the system (in Intelligent Transport Systems, numerous behaviours
are described by means of equations describing physical models). These functions are inserted in arc labels into
the CPN-model produced by theModelling step. Required properties are also set in terms of CPN. However,
the CPN system cannot be analyzed in practice since the system is too complex (due to the data and functions
involved). So, theDiscretization step is dedicated to the generation of an associated system expressed using
Symmetric Nets. Symmetric Nets are well suited to specify such systems that are intrinsically symmetric [3].
Operations such as structural analysis or model checking can be achieved for much larger systems. Formal
analysis of the system is performed at theFormal Verification step.

The following sections present the three main steps of our methodology and especially focus on theDis-
cretization step that is the most delicate one as well as the main contribution of this paper.

3.2 Modelling

There are heterogeneous elements to consider in Intelligent Transport Systems (ITS): computerized actors
(such as cars or controllers in a motorway infrastructure) have to deal with physical variables such as braking
distances, speed and weigth. In [3] we presented a methodology to model large and complex ITS starting from
a specification mainly based on a subset of UML diagrams.

This methodology [3] is also based on the definition and use ofan ITS template. To have a hierarchical and
structured specification using a relevant subset of UML diagrams, we proposed an ITS template that allows
variations of architectures and component variables. The architectures are defined, involving components and
their interconnections through interfaces. This enables us to change and update components of the architecture
and to generate the Petri Net model easily. This template waselaborated from the investigation of case studies
of the SAFESPOT and TrafficView projects [4, 14].

The system high level architecture is specified using UML component diagrams. Interfaces between com-
ponents are specified with class diagrams. This first step of the methodology is used to identify the different
components of the system and their counterparts in Petri nets. It is also used to define how they should be
assembled to compose a complete model. Then, the behaviour of each component can be specified either with
UML activity diagrams, UML state machines or Petri nets. This methodology relies on the use of Petri scripts
to assemble the complete model but also for modelling complex components.

This methodology is well suited to have a fast, efficient, modular and incremental approach in modelling
large systems. But only a subpart of the “required properties” of the system could be checked. Especially, it

was not possible to verify properties related to quantitative variables as they are usually abstracted in the Petri
nets.

The work presented in this paper aims at providing a more precise representation of the system in the Petri
net models by representing those quantitative variables. To design the CPN model we used a template adapted
to the case study presented in Section 4. The “interfaces” ofthe Petri net model, presented in Section 5, were
already identified. The main task was to identify control anddata flows that are involved in this subpart of
the system, and that must be modeled to allow formal verification. Also, operations made on those flows were
identified.

Then, the different selected variables of the system were represented using equivalent types in CPN. For
example, continuous variables of the system were modelled with the real type of CPN formalism. The functions
of the system that manipulate the continuous variables wererepresented using arc expressions.

3.3 Discretization

The discretization step takes CPN with their properties as inputs, and produces SN with their properties as
outputs. To achieve this goal, a discretization of the real data and functions involved is performed. As a result,
the types involved in the CPN are abstracted, and the real functions are represented by a place providing tuples
of appropriate result values.

We propose different steps to manage the discretization of continuous functions in Symmetric Nets

• Continuous feature discretization.

• Error propagation computing

• Type transformation and modelling of complex functions in Symmetric Nets.

Continuous feature discretization Discretization is the process of transforming continuous models and
equations into discrete counterparts. Depending on the domain to which this process is applied we use also
the words “digitizing”, “digitization”, “sampling”, “quantization” or “encoding”. Techniques for discretization
differ according to application domains and objectives.

Let us introduce the following definitions that are used in this paper to avoid ambiguity:

Definition 3.1. A region is a n-dimentional polygon (i.e. a polytope) made by adjacent points of an n-
dimentional discretized function.

Definition 3.2. A mesh is a set of regions used to represent a n-dimentional discretized function for modeling
or analysis.

There exist many discretization methods that can be classified between global or local, supervised or unsu-
pervised, and static or dynamic methods [17].

• Local methodsproduce partitions that are applied to localized regions ofthe instance space. Those
methods usually use decision trees to produce the partitions (i.e. the classification).

• Global methods(like binning) [17] produce a mesh over the entiren-dimentional continuous instance
space, where each feature is partitioned into regions. The mesh contain∏n

i=1ki regions, whereki is the
number of partitions of theith feature.

In our study we consider theequal width interval binning method as a first approach to discretize the
continuous features. Equal width interval binning is a global unsupervised method that involves dividing the
range of observed values for the variable intok equally sized intervals, where k is a parameter provided by the
user. If a variablex is bounded byxmin andxmax, the interval width is:

∆ =
xmax−xmin

k
(3.1)

Error propagation computing To model a continuous function in Symmetric Nets it is necessary to convert
it into an equivalent discrete function. This operation introduces inaccuracy (or error) which must be taken
into account during the formal verification of the model. This inaccuracy can be taken into account in the
Symmetric Net properties in order to keep them in accordancewith the original system required properties.
The other solution is to change the original required properties taking into account the introduced inaccuracy.

The issues are well expressed below [6]:
In science, the terms uncertainties or errors do not refer tomistakes or blunders. Rather, they refer to

those uncertainties that are inherent in all measurements and can never be completely eliminated.(...) A large
part of a scientist’s effort is devoted to understanding these uncertainties (error analysis) so that appropriate
conclusions can be drawn from variable observations. A common complaint of students is that the error
analysis is more tedious than the calculation of the numbersthey are trying to measure. This is generally true.
However, measurements can be quite meaningless without knowledge of their associated errors.

There are different methods to compute the error propagation in a function [30, 6]. The most current
one is to determine the separate contribution due to errors on input variables and to combine the individual
contributions in quadrature.

∆ f (x,y,..) =
√

∆2
f x + ∆2

f y + ... (3.2)

Then, different methods to compute the contribution of input variables to the error in the function are possible,
like the “derivative method” or the “computational method”.

• The derivative method evaluates the contribution of a variablex to the error on a functionf as the product
of error onx (i.e. ∆x) with the partial derivative off (x,y, ..):

∆ f x =
∂ f (x,y, ..)

∂x
∆x (3.3)

• The computational method computes the variation directly by a finite difference:

∆ f x =| f (x+ ∆x,y, ..)− f (x,y, ..) | (3.4)

The use of individual contribution in a quadrature relies onthe assumption that the variables are independent
and that they have a Gaussian distribution for their mean values. This method is interesting as it gives a good
evaluation of the error. But we do not have a probabilistic approach, and we do not have a Gaussian distribution
of the “measured” values.

In this paper, we prefer to compute the maximum error bounds on f due to the errors on variables as it gives
an exact evaluation of the error propagation. Letf (x) be a continuous function,x be the continuous variable,
andxdisc the discrete value ofx. If we choose a discretization step of 2∗∆x we can say that for eachxdisc image
of x by the discretization process,x ∈ [xdisc− ∆x,xdisc+ ∆x] (which is usually simplified by the expression
x = xdisc±∆x). We can compute the error∆ f (x) introduced by the discretization:

f (x) = f (xdisc)±∆ f (x) (3.5)

∆ f (x) = f (x±∆x)− f (x) (3.6)

We can also say that the error onf (x) is inside the interval :

∆ f (x) ∈ [Min(f (x±∆x)− f (x)),Max(f (x±∆x)− f (x))] (3.7)

This method can also be applied with functions of multiple variables. In this case, for a functionf of n variables
f (x±∆x,y±∆y, ..) has 2n solutions. The maximum error bounds onf are:

∆ f ∈ [Min(f (x±∆x,y±∆y, ..)− f (x,y, ..)),Max(f (x±∆x,y±∆y, ..)− f (x,y, ..))] (3.8)

An example of this method applied to an emergency braking function is presented in Section 5.2.

Type transformation Once the best discretization actions are decided upon as regards our goals, the CPN
specification may be transformed. The resulting net is a symmetric net.

Let us first note that some types do not need to be transformed because they are simple enough (e.g.
enumerated types) and do not affect the state graph complexity.

When the types are more complex, two kinds of transformationare involved in this process, that concern
the value set (also called carrier set), and the complex functions. The value set transformation results from the
discretization of all infinite domains into an enumerated domain.

A node refinement is applied to transitions that involve a complex function on an output arc expression.
As explained below and in Figure 3, there are two possibilities to handle this. In our method, such functions
are represented by tuples of discrete values (values of the function arguments and of the result) that are stored
in a valuesplace. Thevaluesplace is both input and output of the refined transition, thusfor any input data
provided by the original input arc(s), thevaluesplace yields the appropriate tuple with the function result.

Modelling of complex functions in Symmetric Nets To cope with the modelling of complex functions in
Symmetric Nets (for example, the computation of braking distance according to the current speed of a vehicle),
we must discretize and represent them either in a specific place or as a guard of a transition. When a place is
used, it can be held in an SN-module ; it then represents the function and can be stored in a dedicated library.

Class
 Cx is 0..5;
 Cy is 0..6;
Domain
 D is <Cx,Cy>;
Var
 x, in Cx;
 y in Cy;

y

0

2

4

6

2 4 x

(a) (b)

result
Cy

param
Cx

values
D

<0,0>, <1,1>,
<2,1>, <3,2>,
<4,3>, <5,6>

<x>

<y>

<x,y>

<x,y>

[x=0 and y=0] or
[x=1 and y=1] or
[x=2 and y=1] or
[x=3 and y=2] or
[x=4 and y=3] or
[x=5 and y=6]

param
Cx

result
Cy

<y>

<x>

(c)

Figure 3: Example of complex function discretization by means of a place or a transition guard

Figure 3 represents an example of function discretization.The left side (a) of Figure 3 shows a function
that is discretized, and the right side shows the corresponding Petri net models : in model (b), the function is
discretized by means of a place, in model (c), it is discretized by mean of a transition guard. In both cases,
correct associations between x and y are the only ones to be selected when the transition fires. Note that in
model (b)valuesmarkings remain constants.

This technique can be generalized to any functionx = f (x1,x2, ...,xn), regardless of its complexity. Non
deterministic functions can also be specified in the same way(for example, to model potential errors in the
system). Let us note that:

• the discretization of any function becomes a modelling hypothesis and must be validated separately (to
evaluate the impact of imprecision due to discretization),

• given a function, it is easy to automatically generate the list of values to be stored in the initial marking
of the place representing the function, or to be put in the guard of the corresponding transition.

The only drawback of this technique is a loss in precision compared to continuous systems that require
appropriate hybrid techniques [10]. Thus, the choice of a discretization schema must be evaluated, for example
to ensure that uncertainty remains in a safe range.

3.4 Verification

We use CPN-AMI [31] to perform verification. So far, our models can be analyzed using:

• Structural techniques(invariant computation, structural bounds, etc) on P/T nets. Since our nets are
coloured, an unfolding tool able to cope with large systems [27] is used to derive the corresponding P/T
net to compute structural properties.

• Model checking, we designed efficient model checking techniques that are dedicated to this kind of
systems and make intensive use of symmetries as well as of decision diagrams. Such techniques revealed
to be very efficient for this kind of systems by exploiting their regularity [22, 3].

However, due to the complexity of such systems, discretization is a very important point. If Symmetric net
coloured classes are too large (i.e. the discretization interval is too small), we face a combinatorial explosion
(for both model checking or structural analysis by unfolding). On the other hand, if the error introduced by
the discretization is too high, the property loses its ”precision” and the verification of properties may lose its
significance.

This is why in Figure 2, the discretization step needsverification constraintsas inputs from the verification
step. A compromise between combinatorial explosion and precision in the model must be found.

4 Modelling the Emergency Braking Problem

The case study presented in this paper is a subpart of an application from the “Intelligent Road Transport
System” domain. It is inspired from the European project SAFESPOT [4]. This application is called “Hazard
and Incident Warning” (H&IW), and its objective is to warn the driver when an obstacle is located on the road.
Different levels of warning are considered, depending on the criticality of the situation. This section presents
the “Emergency Braking module” of the application and how itcan be specified using the CPN formalism.

4.1 Presentation of the Case Study

SAFESPOT is an Integrated Project funded by the European Commission, under the strategic objective
“Safety Cooperative Systems for Road Transport”. The Goal of SAFESPOT is to understand how “intelligent”
vehicles and “intelligent” roads can cooperate to produce abreakthrough in road safety. By combining data
from vehicle-side and road-side sensors, the SAFESPOT project will allow to extend the time in which an
accident is foreseen. The transmission of warnings and advices to approaching vehicles (by means of vehicle-
to-vehicle and vehicle-to-infrastructurecommunications [34, 19, 24]), will extend in space and time the driver’s
awareness of the surrounding environment.

The SAFESPOT applications [2] rely on a complex functional architecture. If the sensors and warning
devices differ between SAFESPOT vehicles and SAFESPOT infrastructure, the functional architecture is de-
signed to be almost the same for these two main entities of thesystem providing a peer-to-peer network archi-
tecture. It enables real-time exchange of vehicles’ statusand of all detected events or environmental conditions
from the road. This is necessary to take advantage of the cooperative approach and thus enable the design of
effective safety applications.

As presented in Figure 4, information measured by sensors isprovided to the “Data Processing / Fusion”
module or transmitted through the network to the “Data Fusion Processing / Fusion” module of other enti-
ties. This module analyses and processes arriving data to put them on the “Local Dynamic Map” (LDM) of
the system. The “Local Dynamic Map” enables the cooperativeapplications of the system to retrieve relevant
variables and parameters depending on their purpose. The applications are then able to trigger relevant warn-
ings to be transmitted to appropriate entities and displayed via an onboard Human Machine Interface (HMI)
or road side Variable Message Signs (VMS). In SAFESPOT, five main infrastructure-based applications were
defined: “Speed Alert”, “Hazard and Incident Warning”, “Road Departure Prevention”, “Co-operative Inter-
section Collision Prevention” and “Safety Margin for Assistance and Emergency Vehicles”. These applications
are designed to provide the most efficient recommendations to the driver.

The aim of the “Hazard and Incident Warning” application is to warn the drivers in case of dangerous
events on the road. Selected events are: accident, presenceof unexpected obstacles on the road, traffic jam
ahead, presence of pedestrians, presence of animals and presence of a vehicle driving in the wrong direction
or dangerously overtaking. This application also analysesall environmental conditions that may influence the
road friction or decrease the drivers’ visibility. Based onthe cooperation of vehicles and road side sensors, the

Figure 4: SAFESPOT High Level Architecture

“Hazard and Incident Warning” application provides warnings to the drivers and feeds the SAFESPOT road
side systems and vehicles with information on new driving situations. This application is essential to provide
other applications with the latest relevant road description.

The emergency braking module The emergency braking module is one subsystem in the “Hazardand Inci-
dent Warning” distributed application. It communicates with other subsystems. The behavior of this subsystem
is significant in the SAFESPOT system and must be analyzed.

Petri nets are well suited to describe and analyse this type of application. However, a part of the “Hazard
and Incident Warning” application algorithm is based on theanalysis of continuous variables like vehicle speed
or position of an obstacle. Those data are part of the data flowof the system ; they are also determinant for
the control flow of the system. Many properties of the application can be verified with Petri nets by making
an abstraction of the data flow where “continuous” variablesare involved. This is where we face a huge
combinatorial explosion and have to enhance the Petri net formalism and modelling methodology to enable the
modelisation and verification of this kind of systems.

In the case of an obstacle on the road, the emergency braking module receives/retrieves the speed, decel-
eration capability and the relative distance to a static obstacle for the monitored vehicle. With these data, it
will compute a safety command to be transmitted to the driverand to other applications of the system. Those
commands represent the computed safety status of a vehicle.The three commands (or warnings) issued by this
module are “Comfort” if no action is required from the driver, “Safety” if the driver is supposed to start decel-
erating, and “Emergency” if the driver must quickly start anemergency braking. This is illustrated in Figure 5.
Note that if a driver in an “Emergency” status does not brake within one second, an automated braking should
be triggered by the “Prevent” system (which is another European project).

Figure 5: Emergency braking safety strategy

4.2 Mathematical model of the emergency braking module

The “emergency braking module” implements a strategy function to determine the safety status of a given
vehicle. This function computes the “braking distance” of avehicle from its speed and deceleration capabilities.

Let v∈V be the velocity (speed) of a vehicle withV ⊂ R
+∗. Let alsob∈ B be the braking capability of the

vehicle withB⊂ R
+∗. The braking distance function is then:

f (v,b) =
v2

2b
(4.1)

Let thend ∈ D be the relative distance of the obstacle to the vehicle withD ⊂ R
+. The main algorithm of

the “Emergency braking module” defines two thresholds to determine when a vehicle goes from a “Comfort
sate” to a “Safety state”, and from a “Safety state” to an “Emergency state”. Those thresholds are based on
the time left to the driver to react. According to the application specification, if the driver has more than three
seconds to react he is in a “Comfort state”, then if he has lessthan three seconds but more than one second he
is in the “Safety state”, if he has less than one second to react, he is in the “Emergency State”. The values of
those thresholds are expressed as follow:

EB Sa f ety=
v2

2b
+v∗3−d (4.2)

EB Emergency=
v2

2b
+v∗1−d (4.3)

The resulting algorithm of the strategy function can be represented with this pseudocode:

Eb_Strategy(d,v,b){
Eb_Safety = (vˆ2)/(2b) + v * 3 - d;
Eb_Emergency = (vˆ2)(2b) + v * 1 - d;
if (Eb_Safety < 0) then

Command = ’Comfort’;
else

if (Eb_Emergency < 0) then
Command = ’Safety’;

else
Command = ’Emergency’;

endif
return Command;

}

In SAFESPOT,v values are considered to be in[0,46]m/s, b in [3,9]m/s−2 andd in [0,500]m. If variables
are outside those sets, other applications are triggered (this becomes out of the scope of the emergency braking
module). For exemple, speeds above 46m/sare managed by the “Speed Alert” application.

4.3 Required Properties

The SAFESPOT and H&IW application specifications are completed with required properties to be satisfied
by the system. An analysis of the H&IW required properties shows that over the 47 main requirements, 18
involve continuous space and/or time constraints (i.e. 38%). The method presented in this paper focuses on
those properties. Here are examples of this kind of properties for the emergency braking module:

• Property 1: When the braking distance of a vehicle is below its distancefrom a static obstacle plus one
second of driver’s reaction time, the H&IW application musttrigger an “Emergency” warning.

• Property 2: When the braking distance of a vehicle is below its distancefrom a static obstacle plus three
seconds of driver’s reaction time, the H&IW application must trigger a “Safety” warning.

4.4 The coloured Petri net specification

Several modules in the H&IW application share the same architecture, namely for a given process, data
is retrieved from the interface. Then, a command is computed, and sent to appropriate modules in the sys-
tem. The coloured Petri net of Figure 6 exhibits this genericbehaviour (i.e. the template mentioned in Sec-
tion 3.2). TransitionGet Data has two input arcs from placesInterface Call andInterface Data . Place
Interface Call is typed withPROCESSIDwhich may be an integer subset (here the marking is a token with
value 1). Once a process is called and data is retrieved, place Step1 carries tokens that are couples (pid,data).
TransitionProcess Strategy provides a command resulting from computations from data.

cmdpid

(pid,cmd)

(pid,Strategy(data))

(pid,data)

data

(pid,data)

pid

Interface_Command

COMMAND

Interface_Answer

PROCESSID

Interface_Data

"generic_data"

DATA

Interface_Call

Get_Data

Process_Strategy

Step2

PROCESSID

1

Actuation

Step1

PROCESSIDXCOMMAND

PROCESSIDXDATA

Figure 6: Template Coloured Petri net for the H&IW
applications

eb_cmdpid

(pid,eb_cmd)

(pid,EB_Strategy(eb_data))

(pid,eb_data)

eb_data

(pid,eb_data)

EB_Get_Data

EB_COMMANDPROCESSID

PROCESSIDXEB_COMMAND

(40,23,7)

EB_DATA

PROCESSIDXEB_DATA

Interface_CommandInterface_Answer

Interface_Call Interface_Data

EB_Data_Retrieved

EB_Process_Strategy

EB_Command_Computed

EB_Actuation

pid

PROCESSID

1

Figure 7: Coloured Petri net instantiated for the Emer-
gency Braking application

In Figure 7 this generic schema is instanciated for the Emergency Braking Application (so,generic data
andgeneric commandbecomeEB DATAandEB COMMAND). Data for this application areDistance , Velocity ,
andBraking Factor , thus:

EB DATA = product Distance * Velocity * Braking Factor .
Data modelling physical entities are measured with a possible measurement error and are usually repre-

sented and computed inR∗ in physics computations. For the CPN specification, we can keep this typing for

expressivity sake, while it is clear that it is not usable in practice (we would use integers for Petri nets tools and
float in programming languages).

TheEB COMMANDtype has three possible values related with the three levelsof command or warning, there-
foreEB COMMAND = Comfort | Safety | Emergency . The appropriate command results from theEB Strategy
function computation.

5 Discretization of the Problem

Discretization raises several issues. We propose a way to cope with these issues and apply our solutions to
the emergency braking example.

5.1 Implementing complex functions in Symmetric Nets

Starting from the CPN model we use the methodology presentedin Section 3.
First, CPN types must be transformed into discrete types. Using the equal width interval binning dis-

cretization method (presented in Section 3.3) with a numberof kv, kb andkd intervals for each variable we
obtain a mesh ofkv× kb× kd regions (as defined in definitions 3.2 and 3.1) in the resulting discretized func-
tion. The resulting sets for variablesd, v and b are then composed ofk ordered elements. For example,
with k = kv = kb = kd = 10 the resulting discretized type ofv is [0,4.6,9.2, ...,46] and the discretized braking
function contains 103 regions.

With k = 100, the domain ofv is [0,0.46,0.92, ...,46] and the mesh is composed of 106 regions.
Section 3.3 presents two solutions to model complex functions in Symmetric Nets. We select solutionb

in Figure 3 because it is more efficiently represented in the Symbolic Reachability Graph. Therefore we add
place “EBStrategyTable” in the Symmetric Petri net (Figure 8). Thus, cardinalities of the domains for places
“InterfaceData” and “EBStrategyTable” (respectively named “EBData” and “EBStgyTable” in Figure 8)
are computed using the formula:Card(EBData) = Card(EBStgyTable) = Card(D×V×B). This means that
these cardinalities are equal to the number of regions of thediscretized function.

This method could provide very large markings (that is with alarge number of tuples) in the resulting
Symmetric Net. However, the use of a appropriate state spacerepresentation (by means of decision diagrams
like in [12]) does not impact the size of the generated state space since the large marking is just represented
once (the marking of places encoding complex functions is stable).

We chose a simple and generic discretization method that does not take into account the specificity of
functions to be discretized. Other discretization methodslike those using variable intervals can reduce the
number of markings with the same level of accuracy in the resulting discretized function. Finally, depending
on the kind of expected analysis, it is also possible to compute and use the equivalence classes. Those aspects
are discussed later on this paper in sections 7.1 and 6.2.2.

5.2 Computation of the error propagation in Symmetric Nets

As presented in Section 3, we compute the precision error introduced by the discretization operation. The
resulting error in the computation of the “Safety Threshold” is:

∆Eb Sa f ety= Eb Sa f ety(v±∆v,b±∆b,d±∆d)−Eb Sa f ety(v,b,d) (5.1)

∆Eb Sa f ety= (
(v±∆v)

2

2(b±∆b)
+3(v±∆v)− (d±∆d))− (

v2

2b
+3v−d) (5.2)

∆Eb Sa f ety=
(v±∆v)

2

2(b±∆b)
−

v2

2b
±3∆v±∆d (5.3)

For example, let us consider a classic private vehicle driving atv = 14m/s (i.e. 50km/h), on a dry road
(i.e. b = 8m/s2), atd = 500m from an obstacle. If we considerk = 100 intervals and an error of respectively
±0.45m/s for v, ±0.06m/s2 for d and±5m for p. Then we obtain:

∆Eb Sa f ety∈ [−7.25m,+7.29m]

∆Eb Emergency∈ [−6.33m,+6.37m]

For the same vehicle at 100 meters from the obstacle, drivingat v = 36m/s (i.e. 130km/h), on a wet road
(i.e. b = 4m/s2), we obtain:

∆Eb Sa f ety∈ [−12.85m,+13.10m]

∆Eb Emergency∈ [−11.93m,+12.19m]

Those results provide an information on the precision of theSymmetric Net properties. Table 1 gives
some error bounds computed from four values for parameterk. As expected, precision of computed thresholds
depends onk. However, precision also depends on the values of variables. For example, values ofv andb are
determinant on the computation of error bounds. Exploitingthose precisions, to validate the Symmetric Net
model and its properties, requires to consider carefully those values.

Discretization parameter v = 13m/s, b = 8m/s−2, v = 36m/s, b = 4m/s−2,
d = 500m d = 100m

k = 10 ∆Eb Sa f ety∈ [−70.83m,74.84m] ∆Eb Sa f ety∈ [−118.9m,144.5m]
card(EBData) = 103 ∆Eb Emergency∈ [−61.64m,65.64m] ∆Eb Emergency∈ [−109.7m,135.3m]
k = 20 ∆Eb Sa f ety∈ [−35.87m,36.81m] ∆Eb Sa f ety∈ [−61.97m,68.28m]
card(EBData) = 8∗103 ∆Eb Emergency∈ [−31.27m,32.26m] ∆Eb Emergency∈ [−57.37m,63.68m]
k = 50 ∆Eb Sa f ety∈ [−14.45m,14.61m] ∆Eb Sa f ety∈ [−25.47m,26.47m]
card(EBData) = 12.5∗103 ∆Eb Emergency∈ [−12.62m,12.77m] ∆Eb Emergency∈ [−23.63m,24.63m]
k = 100 ∆Eb Sa f ety∈ [−7.25m,7.29m] ∆Eb Sa f ety∈ [−12.85m,13.10m]
card(EBData) = 106 ∆Eb Emergency∈ [−6.33m,6.37m] ∆Eb Emergency∈ [−11.93m,12.19m]

Table 1: Error bounds for different discretization parameters

5.3 Validating the discretization in Symmetric Nets

Discretization of variables and function in the Symmetric Net model in Figure 8 introduces imprecision.
Depending on properties that need to be verified, this imprecision must be considered. For example, properties
presented section 4.3 can be verified using CTL (ComputationTree Logic) [18] formulae. With a discretization
factor ofk = 100 values on input variables, property 1 can be verified withan accuracy smaller than±7,3mon
a relative distance, for a velocity of 14m/son a dry road.

If the introduced imprecision is acceptable with regards tothe properties to be verified, then the system
designer can state that the discretization is valid for those properties. Otherwise, a better accuracy may be
required and a new discretization must be done.

It is also possible to integrate the imprecision in the CTL formulae. To do so, more constraining value
of input variables must be chosen (i.e. an higher speed, a lower braking factor or a closer obstacle) in the
CTL formula. In our case, the simplest way is to choose a lowervalue of obstacle position that cover the
discretization error.

In some cases, it is possible to compute the discretization of input variables depending on the required
precision on the function. This solution is discussed in section 7.2.

5.4 Transformation to obtain the Symmetric net

The SN in Figure 8 is derived from the CPN in Figure 7. Our purpose is to obtain a manageable state space
for model checking, and, as presented in Section 3.3 and in Figure 3, this leads us to discretize some types and
also to adopt some modelling for complex functions.

Thus, the different fields ofEB DATA in Figure 7 are now discretized. For example, type Distance is dis-
cretized into an enumeration:0, 50, 100 , etc.

EB DATA is associated toEBData in the SN of Figure 8 that is a list of 3-uples (Distance , Velocity ,
Braking Factor).

Now, as explained in Section 3.3 and shown in Figure 3 (b), theapproach for modelling the function
EB Strategy is to add a place with a marking that is a conversion table for the discretized function. Thus, the
EB Strategy function in Figure 7 is associated in Figure 8 to a tableEBStgyTablethat represents the discretized
function (Emergency , Safety or Comfort). This result is retrieved by means of placeEB Strategy Table
connected to transitionEB Process Strategy .

EB_Command_Computed

EBOutArgs

Interface_Data
EBData
<Distance.all,Velocity.all,Breaking_Factor.all>

Interface_Call
ProcessId

<1>

EB_Strategy_Table

EBStgyTable

<0,0,4,Emergency>,
<50,0,4,Safety>,
<80,0,4,Comfort>

EB_Data_Retrieved

EBInArgs

Interface_Command
EBCommand

Interface_Answer
ProcessId

EB_Get_Data

EB_Process_Strategy

EB_Actuation

<d,v,b>

<eb_cmd>

<pid>

<d, v, b, eb_cmd>

<d, v, b, eb_cmd>

<pid>

<pid, d,v,b>

<pid, d,v,b>

<pid, eb_cmd>

<pid, eb_cmd>

Class

 ProcessId is 1..1 ;

 Distance is [_0, _50, _100, ... , _500];

 Velocity is [_0, _4.6, _0.2, .., _46];

 Braking_Factor is [_3, _3.6, _4.2, .., _9];

 EBCommand is [Comfort, Safety, Emergency] ;

Domain

 EBData is <Distance, Velocity, Braking_Factor> ;

 EBInArgs is <ProcessId, Distance, Velocity,

 Braking_Factor > ;

 EBStgyTable is <Distance, Velocity, Braking_Factor,

 EBCommand> ;

 EBOutArgs is <ProcessId, EBCommand> ;

 Var

 pid in ProcessId;

 eb_cmd in EBCommand;

 d in Distance;

 v in Velocity;

 b in Braking_Factor;

Figure 8: Symmetric Petri net for Emergency Braking module

Of course, the models presented in this paper are only sub-parts of a system. They can be independently
verified but the purpose is to integrate them in a more complete representation of the system. This integration
may introduce new discretization constraints and verification formulae must be rewritten. Those aspects are
discussed in section 7 of this paper.

6 Net analysis

The use of a discretization method with symmetric nets generates complex models with large markings. It
is important to know what are the consequences on the net analysis and model checking tools. In this section
we present an overview of the analysis results obtained on the model.

Objectives The objectives of this analysis was first to analyse the properties of the net and sources of combi-
natorial explosion. Another interesting aspect of this analysis was to find the limitation of the tools used, which
are not a priori suited to this type of net, and find some optimisation methods.

Experimental method As the complexity of the models presented in this paper is mainly dependent on
the discretisation made on the three input variables, we focussed on the impact of this discretization. The
symetric net model of Figure 8 was adapted to the experiment by connecting place “InterfaceAnswer” to
place “InterfaceCall” with two arcs and a transition with arcs expressions assigning variable< pid > to the
arcs. This allows the net to loop until the marking in place “InterfaceData” is empty. The marking of place
“InterfaceData” was initialized with all values of domain “EBData” as presented Figure 8. Then scripts were
used to initialize the class declaration and the marking of place “EB StrategyTable” depending on the chosen
discretization level. Figure 9 gives an overview of the subset of properties that were tested.

Technical aspects The analysis of the Petri Net is a complex operation that requires different transformations
of the model like unfolding or reduction. Different tools were used to make various analysis. First the CPN
models were designed with CPN-Tools [13], then the symmetric models were designed using Coloane and

Figure 9: Overview of the analyses

Petriscript [31].To make the analysis of the model we chose the CPN-AMI [31] environment that provides a
unified access to different tools like: a Petri net unfoldingtool, PROD [32] or GreatSPN [8].

6.1 Structural analysis

The first analyses made on the net are structural analyses. They do not require the construction of the reach-
ability graph and then, do not require to apply firing rules. Therefore they are less complex than behavioural
analyses.

6.1.1 Symmetric net analysis

We made the computation of Coloured-Invariant on the Symmetric net with different discretisations. The
only invariant detected is the marking of place “EBStrategyTable”, as expected. The results show that the
discretization does not have a significant impact on the memory used for the computation. But due to the size
of the marking of place “EBStrategyTable”, which is composed of all associations between variables and
commands, the tool is not able to show the invariant for largemarkings even if it claims to have made the
computation.

6.1.2 Unfolding the net

The computation of the unfolded net requires an increasing amount of memory depending on the discretiza-
tion of input variables. It also gives an increasing unfolded net. In fact, the size of the domain “EBData” has
a cubic growth. An analysis of the symmetric net shows that the size of the unfolded net in terms of places
(np) follows the law:np= 5∗ (k)3 +8 ,wherek is the discretization level. The use of the CPN-AMI unfolder
confirms that the unfolding of the symmetric net did follow this law. It also appears that the memory used to
compute the unfolded net grows even more quickly than the size of the unfolded net. This explains why we
faced a combinatorial explosion in the computation of the unfolded net which has bounded the coverage of our
experiment.

6.1.3 Bound computation

We were able to test the bounds and safety of the net. The net iseffectively bounded but the complexity of
the computation, in terms of memory and time used, is the sameas the one of the unfolding operation.

6.2 Behavioural analysis

The behavioural analysis is based on the use of Great-SPN andProd to produce the reachability graphs.

6.2.1 Computation of the reachability graph

The generation of rechability graphs seems, according to the few tests that we made, to have about the
same complexity in terms of memory and time as that of the unfolding of the net. The size seems also to follow

a cubic growth. Using the symbolic rechability graph of GreatSPN is a little bit more efficient. We did not
make enough LTL and CTL queries to provide conclusions but the detection of deadlocks is not generating an
additionnal combinatorial explosion.

6.2.2 Semantic equivalence Classes in the Model

If we consider the computation ofsafety properties(also called reachability properties) in the reachability
graph, we can deduce that numerous states correspond to similar execution path in the original program or
specification.

0

5

10

15

20

25

30

35

40

45

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

500,0

450,0-500,0
400,0-450,0
350,0-400,0
300,0-350,0
250,0-300,0
200,0-250,0
150,0-200,0
100,0-150,0
50,0-100,0
0,0-50,0

0

5

10

15

20

25

30

35

40

45

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

500,0

3,0

5,0

7,0

9,0

3,0

5,0

7,0

9,0
0

5

10

15

20

25

30

35

40

45

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

500,0

3,0

5,0

7,0

9,0

Comfort zone

Safe zone

Emergency zone

Velocity (m/s)
Braking factor (m/s)2

Safety limit surfaceEmergency limit surface Computed equivalence classes

Velocity (m/s)
Braking factor (m/s)2

Velocity (m/s)
Braking factor (m/s)2

Velocity (m/s)
Braking factor (m/s)2

Safety surface

Emergency surface

Figure 10: Building behavioural equivalence classes from the surfaces generated by the resolution of safety
and emergency equations.

Thus, some accessibility properties could be preserved through equivalence classes. It is then of interest to
exploit these, for example, when the computed subnet is integrated into a larger specification.

In our example, the equivalence classes are based on the net behaviour and must be computed from the
physics equations that define the limits between the different situations of the system: “Comfort”, “Safety”,
“Emergency”. To determine the surface that delimits equivalence classes in the state space, we compute solu-
tions equations 4.2 and 4.3. We then get the two surfaces displayed on the left part of Figure 10.

From these surfaces, we can deduce five equivalence zones in the reachability graph as shown on the right
part of Figure 10:

• the one above safety limit surface,

• the safety limit surface itself,

• the one between safety and emergency surfaces,

• the emergency surface itself,

• the one below the emergency surface.

For reachability properties, it is possible to provide a coherent discretization that reaches at least all these
equivalence classes by randomly selecting any point in eachzone and adding the corresponding value ofb
(from B axis), d (from D axis) andv (from V axis). Then, for each discretized colourB, D andV, we can
take the coordinates of five points randomly chosen in these five zones. This approach is similar to the one
proposed in [16] that was dealing with one colour domain onlyand used guards from the Petri nets to compute
equivalence classes.

6.3 Conclusion on the analysis

The conclusions on the analysis of the nets are balanced. We were able to check properties but not for large
models. The limitation comes from either the limitation of the tools, that are often not able to manage large
markings, or from the complexity of the property to be analysed. We think anyway, that exploiting behavioural
symmetries will solve some of those limitations.

7 Discussion and Open Issues

We have described and applied a discretization method to cope with hybrid systems and handle continuous
variables in a safe and discrete manner. In this section, we open a discussion on several aspects.

7.1 Other discretization parameters

The methodology presented in this paper is based on the use ofa discretization algorithm to discretize
continuous variables. In section 5.2, we used “equal width interval binning” algorithm because it is simple to
implement. This algorithm, like many others, relies on discretization parameters that can be optimized for a
given set of continuous variables and functions.

However, in the emergency braking module example, we may study the partial derivates of the error on the
two thresholds (∆EB Sa f etyand∆EB Emergency). We then find that variablesv andd are more influent thanb. For
example, the partial derivate of the error on theEB Sa f etythreshold (equation 5.3) with respect to the variable
v is:

∂∆Eb Sa f ety

∂v
=

v±∆v

b±∆b
−

v
b

(7.1)

This allows to find optimized discretization parameters considering the respective influence of each in-
volved variable. This is done by considering different parameters for each discretized variable depending on
its influence on the error propagation.

Discretization parameters v = 14m/s,b = 8m/s−2,d = 500m v = 46m/s,b = 4m/s−2,d = 100m
kv = 114,kb = 73,kd = 120 ∆Eb Sa f ety∈ [−6.167m,6.203m] ∆Eb Sa f ety∈ [−12.09m,12.40m]
card(EBData) < 106 ∆Eb Emergency∈ [−5.367m,5.403m] ∆Eb Emergency∈ [−11.29m,11.60m]

Table 2: Discretization with optimized criteria

Table 2 presents the resulting error when discretization parameters are optimized using partial derivates.
It shows that we can reduce the resulting error of about 10% with discretization parameters based on partial
derivates.

The study of the best discretization method and parameters for a given set of continuous variable and
function is a complex problem which can give very interesting results. It is a promising field for future work
on optimization of the methodology presented in this paper.

7.2 Tunning the discretisation

It is of interest to compute the discretization intervals ofdiscretized types (herekb, kv andkd) according to
the maximum error tolerated on one type involved in a property where error must be boundeda priori.

Let us consider as an example the braking distance fonction (4.1) presented section 4.2. It is possible to
compute the discretization intervals of variablesv andb, based on the accuracy required for the function∆ f .
Let ±∆ f be the tolerated error onf , and±∆v, ±∆b be the resulting errors onv andb. Using the error bounds
propagation as presented section 3.3 we get:

±∆ f =
(v±∆v)

2

2∗ (b±∆b)
−

v2

2∗b
(7.2)

We then obtain2:

∆b = −
2∗b2∗∆ f −2∗b∗∆v∗ v−b∗∆2

v

2∗b∗∆ f +v2 (7.3)

and two solutions for∆v that are a little bit more complex.
Let vmin,vmax,bmin andbmaxbe the bounds ofv andb. The cardinality ofV andB sets are:

Card(V) =
vmax−vmin

2∗∆v
(7.4)

Card(B) =
bmax−bmin

2∗∆b
(7.5)

Now, consider that we want the same cardinalities forV andB colour sets (kb = kv). We obtain3:

∆v =
(vmax−vmin)∆b

bmax−bmin
(7.6)

Using the value of∆v of equation (7.6) in equation (7.3), it is now possible to compute∆b from the desired
∆ f .

For only two variables, this method is complex as it gives multiple solutions that need to be analyzed to
choose the appropriate solutions. However, it provides a way to compute the discretization intervals of input
variables depending on the desired output error.

8 Conclusion

In this paper, we proposed a way to integrate continuous aspects of complex specifications into a discretized
Petri Net model. Our approach was studied in the context of Intelligent Transport Systems and, more precisely,
management of emergency braking when an obstacle is identified on the road. An application to this case study
is provided.

This discretization method relies on the use of equations modelling the problem. Such equations come
from the physical models that interact with the system. We attach these equations to a CPN template and then
proceed to its transformation in order to be able to have an analyzable model (i.e. that remains finite).

The equations modeling the problem are used to:

• Provide a discretized abstraction

• To evaluate the quality of this abstraction with regards to the proof of properties on the resulting model.

This is a key point in modeling and evaluating a system by means of formal specification. It is crucial for
engineers to evaluate the quality of the proven properties and, if necessary when assumptions are done (here,
they come from the discretization), to evaluate their impact on the system’s properties. Typically, imprecision
raised by discretization may have to be corrected by either applying a more precise discretization or adding
constants in formulas expressing properties to be checked.

In our paper, discretization is applied on symmetric Nets deduced from CPN since our tools rely on sym-
metric nets. Of course, it is also valid on the CPN models.

In our methodology, different discretization algorithms can be applied. We used in this paper a simple
algorithm as a first approach but other ones based on non-uniform discretization intervals are promising alter-
natives. This will introduce new constraints in formal verification and in error propagation computation but it
is a interesting field for future works.

Also, managing more than one module is of interest. In the context of a SAFESPOT application, several
modules run in parallels and may introduce more continuous types and variables. Future work will then have
to evaluate how a larger number of variable (and constraints) could be managed. In particular, experimenting,

2We intentionally removed the± operator to increase readability.
3Note that it is possible to choose another factor betweenCard(V) andCard(B) as explained section 7.1

propagation of discretization contraints between different modules need a particular attention.

Acknowledgements: We would like to thank the anonymous referees fro their careful reading and helpful
comments.

References

[1] J-R. Abrial. The B book - Assigning Programs to meanings. Cambridge Univ. Press, 1996.

[2] F. Bonnefoi, F. Bellotti, T. Scendzielorz, and F. Visintainer. SAFESPOT Applications for Infrasructure-
based Co-operative Road Safety . In14th World Congress and Exhibition on Intelligent Transport Systems
and Services, Beijing, China, October 2007.

[3] F. Bonnefoi, L. Hillah, F. Kordon, and X. Renault. Design, modeling and analysis of ITS using UML
and Petri Nets. In10th International IEEE Conference on Intelligent Transportation Systems (ITSC’07),
pages 314–319, Seattle, USA, September 2007. IEEE Press.

[4] R. Brignolo. Co-operative road safety - the SAFESPOT integrated project. InAPSN - APROSYS Confer-
ence. Advanced Passive Safety Network, May 2006.

[5] Didier Buchs and Nicolas Guelfi. A formal specification framework for object-oriented distributed sys-
tems.IEEE Trans. Software Eng., 26(7):635–652, 2000.

[6] R. Brown C. Covault and D. Driscoll.Uncertainties and Error Propagation - Appendix V of PhysicsLab
Manual. Case Western Reserve University, 2005.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic reachability graph for coloured
Petri nets.Theoretical Computer Science, 176(1–2):39–65, 1997.

[8] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphical Editor and Analyzer
for Timed and Stochastic Petri Nets Performance Evaluation. special issue on Performance Modeling
Tools, 24((1&2)):47–68, November 1995.

[9] Giovanni Chiola, Claude Dutheillet, Giuliana Franceschinis, and Serge Haddad. Stochastic well-formed
colored nets and symmetric modeling applications.IEEE Trans. Computers, 42(11):1343–1360, 1993.

[10] P. Christofides and N. El-Farra.Control Nonlinear And Hybrid Process Systems: Designs for Uncertainty,
Constraints And Time-delays. SPringer Verlag, 2005.

[11] Petri Nets Steering Committee. Petri nets tool database: quick and up-to-date overview of existing tools
for petri netshttp://www.informatik.uni-hamburg.de/TGI/PetriNets/ tools/db.html .

[12] J-M. Couvreur and Y. Thierry-Mieg. Hierarchical Decision Diagrams to Exploit Model Structure.Formal
Techniques for Networked and Distributed Systems - FORTE 2005, pages 443–457, 2005.

[13] The CPN Tools Homepage, 2007. http://www.daimi.au.dk/CPNtools.

[14] S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. Borcea, P. Kang, and L. Iftode. TrafficView: A Driver
Assistant Device for Traffic Monitoring based on Car-to-CarCommunication. In IEEE Computer Press,
editor,IEEE Semiannual Vehicular Technology Conference, 2004.

[15] René David and Hassane Alla. On Hybrid Petri Nets.Discrete Event Dynamic Systems: Theory and
Applications, 11(1-2):9–40, 2001.

[16] M. Doche, I. Vernier-Mounier, and F. Kordon. A modular approach to the specification and validation
of an electrical flight control system. InProceedings of the International Symposium of Formal Methods
Europe on Formal Methods for Increasing Software Productivity, pages 590–610. Springer-Verlag, 2001.

[17] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of con-
tinuous features. InInternational Conference on Machine Learning, pages 194–202, 1995.

[18] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness in the temporal logic
of branching time.J. Comput. Syst. Sci., 30(1):1–24, 1985.

[19] IEEE 802.11 Working Group for WLAN Standards.IEEE 802.11 tm Wireless Local Arae Networks.
IEEE, 2008.

[20] Frame Forum. The FRAME forum home page,http://www.frame-online.net .

[21] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves. PN standardisation : a survey. InInternational Con-
ference on Formal Methods for Networked and Distributed Systems (FORTE’06), pages 307–322, Paris,
France, September 2006. IFIP.

[22] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir, and T. Vergnaud. On the Formal Verification
of Middleware Behavioral Properties. In9th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’04), pages 139–157. Elsevier, September 2004.

[23] ISO/IEC-JTC1/SC7/WG19. International Standard ISO/IEC 15909: Software and Systems Engineering
- High-level Petri Nets, Part 1: Concepts, Definitions and Graphical Notation, December 2004.

[24] D.Luca J.Daniel. IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular
Environments. InProceedings of Vehicular Technology Conference,VTC Spring, IEEE, pages 2036–2040,
May 2008.

[25] Kurt Jensen.Coloured Petri nets: basic concepts, analysis methods and practical use, vol. 1, vol. 2 et vol.
3. Springer-Verlag, London, UK, 1995.

[26] Kurt Jensen and Lars M. Kristensen.Coloured Petri Nets, Modelling and Validation of Concurrent Sys-
tems. Monograph to be published by Springer Verlag, 2008.

[27] F. Kordon, A. Linard, and E. Paviot-Adet. Optimized Colored Nets Unfolding. InInternational Confer-
ence on Formal Methods for Networked and Distributed Systems (FORTE’06), volume 4229 ofLNCS,
pages 339–355, Paris, France, September 2006. Springer Verlag.

[28] Charles Lakos and Glenn Lewis. Incremental state spaceconstruction of coloured Petri nets. InProc.
22nd Int. Conf. Application and Theory of Petri Nets (ICATPN’01), volume 2075 ofLecture Notes in
Computer Science, pages 263–282. Springer, 2001.

[29] Glenn Lewis. Incremental specification and analysis in the context of coloured Petri nets. PhD thesis,
University of Hobart,Tasmania, 2002.

[30] Vern Lindberg.Uncertainties and Error Propagation - Part I of a manual on Uncertainties, Graphing,
and the Vernier Caliper. Rochester Institute of Technology, 2000.

[31] LIP6/MoVe. The CPN-AMI home page,http://www.lip6.fr/cpn-ami/ .

[32] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. Prod reference manual. Technical report,
Helsinki University of Technology, 1995.

[33] Jacques Vautherin. Parallel systems specifications with coloured Petri nets and algebraic specifications.
In Advances in Petri Nets 1987, covers the 7th European Workshop on Applications and Theory of Petri
Nets, June 1986, pages 293–308, London, UK, 1987. Springer-Verlag.

[34] ISO TC204 WG-16.CALM architecture. ISO, 2007.

