A discretization method from coloured to symmetric nets:
application to an industrial example

FabienBonnefoi ChristineChoppy FabriceKordon
DSO/DSETI, LIPN, CNRS UMR 7030, LIP6 - CNRS UMR 7606,
Cofiroute, Université Paris XIlI, Université P. & M. Curie,
6 - 10 rue Troyon, 99 av. J-B Clément, 4 Place Jussieu,
92310 Sevres, France 93430 Villetaneuse, France 75252 Paris Cedex 05, France
Fabien.Bonnefoi@cofiroute.com Christine.Choppy@lipn.univ-paris13.fr Fabrice.Kordon@lip6.fr

1 Introduction

Future supervision systems tend to be distributed and st festially embedded. Distribution brings a
huge complexity and then, a strong need to deduce possitdel @nd bad) behaviours on the global system,
from the known behaviour of its actors. This is crucial singgsion critical or life critical missions are more
and more supervised by such systems. Intelligent Tran§ystems (ITS) are a typical example: more and
more functions tend to be integrated in vehicles and roadstifucture.

Moreover, in many cases (like ITS), physical constraingspart of the system description. Analysis tech-
nigues based on discrete models must integrate such doitsstrave then speak dfybrid systems.

So, a major trend in formal analysis is to cope with such systeThis raises many issues in terms of
analysis complexity. Some techniques are dedicated tonuants analysis such as algebraic approaches like
B [1]. However, such approaches are difficult to set up and imdsistries prefer push-button tools.

Model checking easily offers such push-button tools busdus cope well with continuous systems. Most
model checking techniques deal with discrete (finite) systeThus, management of hybrid systems is not easy
or leads to potentially infinite systems that are difficulvéify (for example, management of continuous time
requires much care, even to only have decidable models)itHipetri Nets [15] might be a solution to model
and analyze hybrid systems but no tool is available to tegteresafety nor temporal logic properties [11].

In this paper, we propose a methodology to handle hybricgsystith model checking on Petri Nets and
algebraic methods. Our methodology is based on transfansafrom Coloured Petri Nets (CPN) [25, 26] to
Symmetric Petri Nets (SN) [9, 7].

CPN allow an easy modelling of the system to be analyzed. 8Nfdnterest for their analysis because of
the symbolic reachability graph that is efficient to reprdédbe state space of large systems. Moreover, since
SN only offer a limited set of operations on colours, transfation from CPN requires much care from the
designer as regards the types to be discretized.

Our methodology also addresses an important question:isvtiest impact of discretization on the precision
of verification? As in scientific computing, the discretipat process may generate “precision errors” that
could turn a given verified property into a wrong one. In thede; the property to be verified might have to be
transformed to take into consideration such precisiornrerro

Section 2 briefly recalls the notions of CPN, SN and abswagtefinement, type issues. Our methodology
which involves modelling, discretization and verificatigrpresented in Section 3, and we show in Section 4
how we model our Emergency Braking application. The varigsses regarding discretization on our case
study are detailed in Section 5, and issues on net analysigrasented in Section 6. Some open issues are
discussed in Section 7 before a conclusion (Section 8).

2 Building Blocks

This section presents the building blocks from the statb@irt used to set up our transformation method-
ology.

2.1 Coloured Petri Nets

Coloured Petri nets [25, 26] are high level Petri nets whekerts in a place carry data (or colours) of a
given type. Since several tokens may carry the same valeegticept of multiset (or bag) is used to describe
the marking of places.

In this paper, we assume the reader is familiar with the goneEmultisets. We thus recall briefly the
formal definition of coloured Petri nets as in [26]. It shobkinoted however that the types considered for the
place tokens may be basic types (e.g. boolean, integets, s&@ngs, enumerated types) or structured types —
also called compound colour sets — (e.g. lists, productryrétc.). In both cases, the type definition includes
the appropriate (or usual) functions.

Different languages were proposed to support the type tiefinior coloured Petri nets (e.g. algebraic
specification languages as first introduced in [33], objermed languages [5]), and an extension of the
Standard ML language was chosen for CPN Tools [13]. As alywthere may be a tradeoff between the
expressivity of a specification language, and efficiencymtbels are used to compute executions, state graphs,
etc. If expressivity is favored, it could be desirable toailany appropriate type and function, while when tools
should be used to check the behaviour and the properties af/tem studied, the allowed types and functions
are restricted (as the language allowed for CPN Tools or 8giimmetric Nets presented in Section 2.2). Here,
we want to allow a specification language that fits as much ssilple what is needed to describe the problem
under study, and then show how the specification is tran&drso as to allow computations and checks by
tools.

In the following, we refer toE XPRas the set of expressions provided by the net inscriptioguage
(net inscriptions are arcs expressions, guards, coloaraset initial markings), and tB XPR, as the set of
expressiong € EXPRsuch thawar[e] C V.

Definition 2.1. A non-hierarchical coloured Petri net CPN [26] is a tuple
CPN=(PT,A %,V,N,C,G,E,I) such that:

1. Pis afinite set of places.
. T is a finite set of transitions such that A = 0.

. ACPxTUT x P is a set of directed arcs

. V is afinite set of typed variables such that Tlype Z for all variables ve V.

2

3

4. X is afinite set of non empty colour sets (types).

5

6. C : P — X is acolour set function assigning a colour set (or a type)dokeplace.
7

. G: T — EXPR, is a guard function assigning a guard to each transition stizt Ty pé€G(t)) = Bool,
and VaiiG(t)] CV, where VajG(t)] is the set of free variables of(6.

8. E : A— EXPR, is an arc expression function assigning an arc expressiorach arc such that
TypdE(a)) = C(p)ms, where p is the place connected to the arc a.

9. | : A— EXPR is an initialisation function assigning an initial marking each place such that
Typgl(p)) =C(p)wms.

As explained in Section 3, the first step of our methodology isroduce a CPN model for the application
under study. The next step is a transformation motivatetheyliscretization of continuous functions to obtain
a symmetric net.

2.2 Symmetric Nets

Symmetric nets were introduced in [9] and [7], with the goal of exploitingrsgnetries in distributed
systems to provide a more compact representation of thespace.

1Symmetric netsvere formerly known asVell-Formed netsa subclass oHigh-level Petri nets The new name was chosen in the
context of the ISO standardisation of Petri nets [21].

The concept of symmetric nets is similar to the colouredifetrone. However, the allowed types for the
places as well as allowed colour functions are more restticthese restrictions allow us to compute symme-
tries and obtain very compact representations of the spaees enabling the analysis of complex systems as
in [22].

Basically, types must be finite enumerations and can onlydnebined by means of cartesian products.
Allowed functions in arc valuation are: Id, successor, paassor and broadcast (that generates one copy of
any value in the type). These constraints affect points 4, 8, 9 in Definition 2.1.

<P.all> out

P

Class
Pis 1..PR;
Val is 1..V; InCS
Domaln <p> <p, vz
D is <P,Val>; CR
Var comptge Val Mutex
pinP; <Val.all>
v, v2 in Val; <p, v>
outCs i

Figure 1: Example of Symmetric Net

The Symmetric net in Figure 1 represents a class of threddst{fied by an identity in typ®) accessing
a critical resourc€R Threads can get a value within the tyyal from CR. Constant®R andV are integer
parameters for the system. The class of threads is repegsbptplaceout andcompute Placecompute
corresponds to some computation on the basis of the valuedeby CR. At this stage, each thread holds
a value that is replaced when the computation is finishedceMutex handles mutual exclusion between
threads and contains token with no data ("black tokens” énsttnse of the Petri Net standard [23]). Plage
initially holds one token for each value i1 (the marking is then denoted P.all >) and placeCR holds one
value for each value iwal.

Verification of properties can be achieved either by a stmatnalysis, on the symbolic reachability graph
(model checking), or on the unfolded associated Placesitian (PT) net (model checking as well as structural
properties).

2.3 Transformation, abstraction and refinement

Abstraction and refinement are part of the use of formal §ipatibns. While abstraction is crucial to
concentrate on essential aspects of the problem to be s@vele system to be built), and to reason about
them, more elaborate details need to be further introducetié refinement steps. A similar evolution is
taking place when a general pattern or template is estadlighdescribe the common structure of a family of
problems, and when this template is instantiated to deser&ingle given problem.

Three kinds of refinement for coloured Petri nets are intcedun [28, 29], the type refinement, the node
refinement and the subnet refinement. The idea for thesemedims to be correct is that behaviours should be
preserved, and to any behaviour of a refined net it should bsilple to match a behaviour of the abstract net.

We have here another motivation that is raised by the useotd to check the behaviour and properties
of the model, and that may involve the discretization of salmeains so as to reduce the number of possible
values to consider in the state space. It thus involves al$icagpion of some domains that may be considered
as an abstraction.

3 Methodology for Discretization

This section presents our methodology to model and analgeenplex system. We first give an overview
of the approach and then detail its main steps and the inddb@hniques.

3.1 Overview of the Methodology

Figure 2 sketches our methodology. It takes as input a setpfirements structured following the FRAME
method [20]. It is thus divided in two parts:

e thespecificatiordescribes the system (we only consider in this work the beheal aspects),

e therequired propertiegstablish a set of assertions to be verified by the system.

precision on properties

! continuous functions \

CPN model
. N Formal
> CPN Discretization —_+|Verification
properties SN properties

Analysis feed-back

Modelling

Required
properties

Figure 2: Overview of our methodology

Once the specification written using “classical” technigjube system is modelled using high-level Petri
Nets (CPN) that allow one to insert complex colour functisash as one involving real numbers. These
functions come from the specifications of the system (inlligent Transport Systems, numerous behaviours
are described by means of equations describing physicatlsiod hese functions are inserted in arc labels into
the CPN-model produced by théodelling step. Required properties are also set in terms of CPN. Herywev
the CPN system cannot be analyzed in practice since thewsyst®o complex (due to the data and functions
involved). So, theDiscretization step is dedicated to the generation of an associated sysi@mssed using
Symmetric Nets. Symmetric Nets are well suited to specifjhssystems that are intrinsically symmetric [3].
Operations such as structural analysis or model checkingeaachieved for much larger systems. Formal
analysis of the system is performed at Fwrmal Verification step.

The following sections present the three main steps of odhoa®logy and especially focus on tbés-
cretization step that is the most delicate one as well as the main cotibibof this paper.

3.2 Modelling

There are heterogeneous elements to consider in Intetligansport Systems (ITS): computerized actors
(such as cars or controllers in a motorway infrastructuegehto deal with physical variables such as braking
distances, speed and weigth. In [3] we presented a methgyltilanodel large and complex ITS starting from
a specification mainly based on a subset of UML diagrams.

This methodology [3] is also based on the definition and usadT S template. To have a hierarchical and
structured specification using a relevant subset of UML mdiats, we proposed an ITS template that allows
variations of architectures and component variables. Ttigitectures are defined, involving components and
their interconnections through interfaces. This enalbda® whange and update components of the architecture
and to generate the Petri Net model easily. This templatesledmrated from the investigation of case studies
of the SAFESPOT and TrafficView projects [4, 14].

The system high level architecture is specified using UML ponent diagrams. Interfaces between com-
ponents are specified with class diagrams. This first stepeofrtethodology is used to identify the different
components of the system and their counterparts in Pesi rieis also used to define how they should be
assembled to compose a complete model. Then, the behavieaclo component can be specified either with
UML activity diagrams, UML state machines or Petri nets. sTimethodology relies on the use of Petri scripts
to assemble the complete model but also for modelling coxqaenponents.

This methodology is well suited to have a fast, efficient, mladand incremental approach in modelling
large systems. But only a subpart of the “required prop&rté the system could be checked. Especially, it

was not possible to verify properties related to quantiéatiariables as they are usually abstracted in the Petri
nets.

The work presented in this paper aims at providing a moregeeepresentation of the system in the Petri
net models by representing those quantitative variablesleSign the CPN model we used a template adapted
to the case study presented in Section 4. The “interfacefieoPetri net model, presented in Section 5, were
already identified. The main task was to identify control aiadk flows that are involved in this subpart of
the system, and that must be modeled to allow formal verifinatAlso, operations made on those flows were
identified.

Then, the different selected variables of the system weayeesented using equivalent types in CPN. For
example, continuous variables of the system were modelbdhe real type of CPN formalism. The functions
of the system that manipulate the continuous variables vegn@sented using arc expressions.

3.3 Discretization

The discretization step takes CPN with their propertiempats, and produces SN with their properties as
outputs. To achieve this goal, a discretization of the rag@nd functions involved is performed. As a result,
the types involved in the CPN are abstracted, and the reetiins are represented by a place providing tuples
of appropriate result values.

We propose different steps to manage the discretizationmtfrtuous functions in Symmetric Nets

e Continuous feature discretization.
e Error propagation computing

e Type transformation and modelling of complex functions ymfnetric Nets.

Continuous feature discretization Discretization is the process of transforming continuowuslets and
equations into discrete counterparts. Depending on theadota which this process is applied we use also
the words “digitizing”, “digitization”, “sampling”, “quatization” or “encoding”. Techniques for discretization
differ according to application domains and objectives.

Let us introduce the following definitions that are used is traper to avoid ambiguity:

Definition 3.1. A region is a n-dimentional polygon (i.e. a polytope) made by adjageints of an n-
dimentional discretized function.

Definition 3.2. A mesh is a set of regions used to represent a n-dimentional digg@tfunction for modeling
or analysis.

There exist many discretization methods that can be cledsitween global or local, supervised or unsu-
pervised, and static or dynamic methods [17].

e Local methodsproduce partitions that are applied to localized regionthefinstance space. Those
methods usually use decision trees to produce the pasgtifian the classification).

e Global methods(like binning) [17] produce a mesh over the entirglimentional continuous instance
space, where each feature is partitioned into regions. Téghroontair]i_; ki regions, wherd; is the
number of partitions of thgh feature.

In our study we consider thequal width interval binning method as a first approach to discretize the
continuous features. Equal width interval binning is a glaimsupervised method that involves dividing the
range of observed values for the variable ikequally sized intervals, where k is a parameter providedhby t
user. If a variable is bounded bymin andxmax the interval width is:

A— Xmax; Xmin (3.1)

Error propagation computing To model a continuous function in Symmetric Nets it is neagsto convert

it into an equivalent discrete function. This operatiomaniuces inaccuracy (or error) which must be taken

into account during the formal verification of the model. §maccuracy can be taken into account in the

Symmetric Net properties in order to keep them in accordavittethe original system required properties.

The other solution is to change the original required prigetaking into account the introduced inaccuracy.
The issues are well expressed below [6]:

In science, the terms uncertainties or errors do not refemigtakes or blunders. Rather, they refer to
those uncertainties that are inherent in all measurementsean never be completely eliminated.(...) A large
part of a scientist’s effort is devoted to understandingsthancertainties (error analysis) so that appropriate
conclusions can be drawn from variable observations. A comgomplaint of students is that the error
analysis is more tedious than the calculation of the numtiesg are trying to measure. This is generally true.
However, measurements can be quite meaningless withowtéahge of their associated errors.

There are different methods to compute the error propagatia function [30, 6]. The most current
one is to determine the separate contribution due to ermiisput variables and to combine the individual

contributions in quadrature.
Di(xy,.) =/ DF+ D5+ ... (3.2)

Then, different methods to compute the contribution of infariables to the error in the function are possible,
like the “derivative method” or the “computational method”

e The derivative method evaluates the contribution of a téeiato the error on a functiofi as the product
of error onx (i.e. Ay) with the partial derivative of (x,y,..):

of(x.y,..)

L, (3.3)

Aty =

e The computational method computes the variation diregtls bnite difference:

AfX:| f(X+AX7y7")7 f(X,y,..) | (34)

The use of individual contribution in a quadrature reliestom assumption that the variables are independent
and that they have a Gaussian distribution for their meamegal This method is interesting as it gives a good

evaluation of the error. But we do not have a probabilistigrapch, and we do not have a Gaussian distribution
of the “measured” values.

In this paper, we prefer to compute the maximum error boundsdue to the errors on variables as it gives
an exact evaluation of the error propagation. Egt) be a continuous functiorx, be the continuous variable,
andxgisc the discrete value of. If we choose a discretization step of & we can say that for eaclyjscimage
of x by the discretization process,c [Xgisc — Ax, Xdisc + Ax] (which is usually simplified by the expression
X = Xdisc = Ax). We can compute the errdy) introduced by the discretization:

f(x) = f(Xaisc) £ Ds(x) (3.5)
Af(x) = f(X:l:AX)f f(X) (36)

We can also say that the error 6(x) is inside the interval :
At € [Min(f(x£Ax) — f(x)), Max(f(x+Ax) — f(x))] (3.7)

This method can also be applied with functions of multiplgatales. In this case, for a functidnof n variables
f(x£Ax,y£4y,..) has 2 solutions. The maximum error bounds brare:

Af € MIn(f(X£ A y£4y,..) — f(XY,..)),Max(f(X£ A, y£4y,..) — T(X,Y,..))] (3.8)

An example of this method applied to an emergency brakingtfon is presented in Section 5.2.

Type transformation Once the best discretization actions are decided upon asd®gur goals, the CPN
specification may be transformed. The resulting net is a sgtrionet.

Let us first note that some types do not need to be transforreedulse they are simple enough (e.g.
enumerated types) and do not affect the state graph corhplexi

When the types are more complex, two kinds of transformagieninvolved in this process, that concern
the value set (also called carrier set), and the complexitums The value set transformation results from the
discretization of all infinite domains into an enumeratechdm.

A node refinement is applied to transitions that involve a plax function on an output arc expression.
As explained below and in Figure 3, there are two possiédito handle this. In our method, such functions
are represented by tuples of discrete values (values ofitietibn arguments and of the result) that are stored
in avaluesplace. Thevaluesplace is both input and output of the refined transition, flousny input data
provided by the original input arc(s), thaluesplace yields the appropriate tuple with the function result

Modelling of complex functions in Symmetric Nets To cope with the modelling of complex functions in
Symmetric Nets (for example, the computation of brakinggaise according to the current speed of a vehicle),
we must discretize and represent them either in a specifielaas a guard of a transition. When a place is
used, it can be held in an SN-module ; it then represents theiin and can be stored in a dedicated library.

param param
Cx Cx
<x> <>
Cléisis 0.5 <xy> [x=0 and y=0] or
<0 6 . [x=1 and y=1] or
e values <0.0> <LL [x=2 and y=1] or
el b 21> <3.2 [x=3 and y=2] or
D is <Cx,Cy>; <4,3>, <5,6: [X:4 and 5:3] o
Vi = =
il(r incx, <Y <xy> <y>[x=5 and y=6]
yiney: result result
Cy Cy
€Y (b) ©)

Figure 3: Example of complex function discretization by meaf a place or a transition guard

Figure 3 represents an example of function discretizatidre left side (a) of Figure 3 shows a function
that is discretized, and the right side shows the correspgrieetri net models : in model (b), the function is
discretized by means of a place, in model (c), it is disceetiny mean of a transition guard. In both cases,
correct associations between x and y are the only ones tolbetestt when the transition fires. Note that in
model (b)valuesmarkings remain constants.

This technique can be generalized to any funciiea f(x1,X, ..., Xn), regardless of its complexity. Non
deterministic functions can also be specified in the same (feayexample, to model potential errors in the
system). Let us note that:

e the discretization of any function becomes a modelling ligesis and must be validated separately (to
evaluate the impact of imprecision due to discretization),

e given a function, it is easy to automatically generate tbedf values to be stored in the initial marking
of the place representing the function, or to be put in thedjohthe corresponding transition.

The only drawback of this technique is a loss in precision garad to continuous systems that require
appropriate hybrid techniques [10]. Thus, the choice ofarétization schema must be evaluated, for example
to ensure that uncertainty remains in a safe range.

3.4 \Verification

We use CPN-AMI [31] to perform verification. So far, our maglean be analyzed using:

e Structural techniqueginvariant computation, structural bounds, etc) on P/Tsneince our nets are
coloured, an unfolding tool able to cope with large syste?73 s used to derive the corresponding P/T
net to compute structural properties.

e Model checkingwe designed efficient model checking techniques that adécaid to this kind of
systems and make intensive use of symmetries as well asisfalediagrams. Such techniques revealed
to be very efficient for this kind of systems by exploitingithregularity [22, 3].

However, due to the complexity of such systems, discretizas a very important point. If Symmetric net
coloured classes are too large (i.e. the discretizatia@rvat is too small), we face a combinatorial explosion
(for both model checking or structural analysis by unfoiginOn the other hand, if the error introduced by
the discretization is too high, the property loses its "mi@n” and the verification of properties may lose its
significance.

This is why in Figure 2, the discretization step neeesfication constraintsis inputs from the verification
step. A compromise between combinatorial explosion andigioe in the model must be found.

4 Modelling the Emergency Braking Problem

The case study presented in this paper is a subpart of arcappti from the “Intelligent Road Transport
System” domain. It is inspired from the European project BEBPOT [4]. This application is called “Hazard
and Incident Warning” (H&IW), and its objective is to warretdriver when an obstacle is located on the road.
Different levels of warning are considered, depending endtiticality of the situation. This section presents
the “Emergency Braking module” of the application and howaih be specified using the CPN formalism.

4.1 Presentation of the Case Study

SAFESPOT is an Integrated Project funded by the Europeann@ssion, under the strategic objective
“Safety Cooperative Systems for Road Transport”. The GbSIF-ESPOT is to understand how “intelligent”
vehicles and “intelligent” roads can cooperate to produbeeakthrough in road safety. By combining data
from vehicle-side and road-side sensors, the SAFESPOEgrujill allow to extend the time in which an
accident is foreseen. The transmission of warnings andcagvd approaching vehicles (by means of vehicle-
to-vehicle and vehicle-to-infrastructure communicasif@d, 19, 24]), will extend in space and time the driver’s
awareness of the surrounding environment.

The SAFESPOT applications [2] rely on a complex functiorrgh#tecture. If the sensors and warning
devices differ between SAFESPOT vehicles and SAFESPO@strfrcture, the functional architecture is de-
signed to be almost the same for these two main entities afythiem providing a peer-to-peer network archi-
tecture. It enables real-time exchange of vehicles’ stamaisof all detected events or environmental conditions
from the road. This is necessary to take advantage of theecatipe approach and thus enable the design of
effective safety applications.

As presented in Figure 4, information measured by sensgnoigded to the “Data Processing / Fusion”
module or transmitted through the network to the “Data Fu$toocessing / Fusion” module of other enti-
ties. This module analyses and processes arriving datatttih@on on the “Local Dynamic Map” (LDM) of
the system. The “Local Dynamic Map” enables the cooperatpications of the system to retrieve relevant
variables and parameters depending on their purpose. Tiieatons are then able to trigger relevant warn-
ings to be transmitted to appropriate entities and displaya an onboard Human Machine Interface (HMI)
or road side Variable Message Signs (VMS). In SAFESPOT, fisenmfrastructure-based applications were
defined: “Speed Alert”, “Hazard and Incident Warning”, “RiobBeparture Prevention”, “Co-operative Inter-
section Collision Prevention” and “Safety Margin for Agaisce and Emergency Vehicles”. These applications
are designed to provide the most efficient recommendatmtieetdriver.

The aim of the “Hazard and Incident Warning” applicationaswarn the drivers in case of dangerous
events on the road. Selected events are: accident, presenoexpected obstacles on the road, traffic jam
ahead, presence of pedestrians, presence of animals ashpeeof a vehicle driving in the wrong direction
or dangerously overtaking. This application also analgdlesnvironmental conditions that may influence the
road friction or decrease the drivers’ visibility. Basedtba cooperation of vehicles and road side sensors, the

=d Domain Model .~

Actuator, HMI, YMS, ..

External

Application, e.g.
CWIS

Message Stack

[E determines
(- (RN | I I - 1 at design

1 itime £
1

LIk L Message Generation Message Router

=10

WANET Transmitter

cortesxt relevance

relevance checking, e.g. ;
checking meszages |,posit1'0n based)

: & |iiat 5 F WVANET Receiver

Q-AF| Q-API

relevant =

T-AFI 4\ \|/ Q2-AF| far this

node
——[iata Processing / —

Fusion messages relevant to this node

- SPA2
This Wehicle /
Infrastructure Mode's

Sensing & Data
Sources

Figure 4: SAFESPOT High Level Architecture

“Hazard and Incident Warning” application provides wagsrto the drivers and feeds the SAFESPOT road
side systems and vehicles with information on new driviigagions. This application is essential to provide
other applications with the latest relevant road desanpti

The emergency braking module The emergency braking module is one subsystem in the “Hazatdnci-
dent Warning” distributed application. It communicatefiwgther subsystems. The behavior of this subsystem
is significant in the SAFESPOT system and must be analyzed.

Petri nets are well suited to describe and analyse this tppmication. However, a part of the “Hazard
and Incident Warning” application algorithm is based onahelysis of continuous variables like vehicle speed
or position of an obstacle. Those data are part of the datadfawe system ; they are also determinant for
the control flow of the system. Many properties of the appiicacan be verified with Petri nets by making
an abstraction of the data flow where “continuous” varialales involved. This is where we face a huge
combinatorial explosion and have to enhance the Petri netdlism and modelling methodology to enable the
modelisation and verification of this kind of systems.

In the case of an obstacle on the road, the emergency braladglmreceives/retrieves the speed, decel-
eration capability and the relative distance to a statidauths for the monitored vehicle. With these data, it
will compute a safety command to be transmitted to the diwet to other applications of the system. Those
commands represent the computed safety status of a vehidaehree commands (or warnings) issued by this
module are “Comfort” if no action is required from the driy&afety” if the driver is supposed to start decel-
erating, and “Emergency” if the driver must quickly starteanergency braking. This is illustrated in Figure 5.
Note that if a driver in an “Emergency” status does not brakbiwone second, an automated braking should
be triggered by the “Prevent” system (which is another Eaaopproject).

= , ¥
- > —

Event
a. Calculation of braking distance/time (obstacle)

DIRECTION OF TRAFFIC

ADVANCE WARNING PREVENTION MITIGATION
“COMFORT” “SAFETY” "EMERGENCY"|

b. Three categories for warning types

Figure 5: Emergency braking safety strategy

4.2 Mathematical model of the emergency braking module

The “emergency braking module” implements a strategy fondb determine the safety status of a given
vehicle. This function computes the “braking distance” @éhicle from its speed and deceleration capabilities.

Letv eV be the velocity (speed) of a vehicle wkhc R**. Let alsob € B be the braking capability of the
vehicle withB c R**. The braking distance function is then:

V2

f(v,b) = 5 (4.2)
Let thend € D be the relative distance of the obstacle to the vehicle @ithR". The main algorithm of

the “Emergency braking module” defines two thresholds termeine when a vehicle goes from a “Comfort
sate” to a “Safety state”, and from a “Safety state” to an “Egeacy state”. Those thresholds are based on
the time left to the driver to react. According to the apgiiza specification, if the driver has more than three
seconds to react he is in a “Comfort state”, then if he hastlessthree seconds but more than one second he
is in the “Safety state”, if he has less than one second td,reads in the “Emergency State”. The values of
those thresholds are expressed as follow:

2

EB Safety— \2/—b+v*37d 4.2)
V2
EB_Emergency= % +vxl-—d (4.3)

The resulting algorithm of the strategy function can be espnted with this pseudocode:

Eb_Strategy(d,v,b){
Eb_Safety = (v2)/(2b) + v * 3 - d;
Eb_Emergency = (vi2)(2b) + v * 1 - d;
if (Eb_Safety < 0) then
Command = 'Comfort’;
else
if (Eb_Emergency < 0) then
Command = 'Safety’;
else
Command = 'Emergency’;
endif
return Command;

In SAFESPOTy values are considered to be[®46m/s, b in [3,9]m/s~2 andd in [0,500m. If variables
are outside those sets, other applications are triggemeh@comes out of the scope of the emergency braking
module). For exemple, speeds above¥i§are managed by the “Speed Alert” application.

4.3 Required Properties

The SAFESPOT and H&IW application specifications are comeplevith required properties to be satisfied
by the system. An analysis of the H&IW required propertiesvehthat over the 47 main requirements, 18
involve continuous space and/or time constraints (i.e. 38Phe method presented in this paper focuses on
those properties. Here are examples of this kind of progeftir the emergency braking module:

e Property 1: When the braking distance of a vehicle is below its distdnm® a static obstacle plus one
second of driver’s reaction time, the H&IW application mtriggger an “Emergency” warning.

e Property 2: When the braking distance of a vehicle is below its distdrmm a static obstacle plus three
seconds of driver’s reaction time, the H&IW application mngiger a “Safety” warning.

4.4 The coloured Petri net specification

Several modules in the H&IW application share the same tachire, namely for a given process, data
is retrieved from the interface. Then, a command is compuard sent to appropriate modules in the sys-
tem. The coloured Petri net of Figure 6 exhibits this genkelbaviour (i.e. the template mentioned in Sec-
tion 3.2). TransitiorGet Data has two input arcs from placégerface _Call andinterface _Data. Place
Interface _Call is typed withPROCESSIDwhich may be an integer subset (here the marking is a tokdn wit
value 1). Once a process is called and data is retrieveds Btegl carries tokens that are couples (pid,data).
TransitionProcess _Strategy provides a command resulting from computations from data.

1 "generic_data" 1 (

Interface_Call Interface_Call

PROCESSID
data pid

40,23,7)

Interface_Data Interface_Data

PROCESSID h EB_DATA
pid eb_data

Get_Data EB_Get_Data

(pid,eb_data)

EB_Data_Retrieved

PROCESSIDXEB_DATA
(pid,eb_data)

EB_Process_Strategy

(pid,EB_Strategy(eb_data))

EB_Command_Computed

PROCESSIDXEB_COMMAND
(pid,eb_cmd)

EB_Actuation

pid

Interface_Answer

PROCESSID COMMAND PROCESSID EB_COMMAND

Interface_Command

Interface_Answer Interface_Command

Figure 6: Template Coloured Petri net for the H&IW Figure 7: Coloured Petri net instantiated for the Emer-
applications gency Braking application

In Figure 7 this generic schema is instanciated for the EarargBraking Application (sajeneric _data
andgeneric _commandbecomeEB_DATAandEB. COMMANDData for this application aristance , Velocity
andBraking _Factor , thus:

EB.DATA = product Distance * Velocity * Braking _Factor .

Data modelling physical entities are measured with a ptessiteasurement error and are usually repre-
sented and computed IR* in physics computations. For the CPN specification, we cap khis typing for

expressivity sake, while itis clear that it is not usableriagpice (we would use integers for Petri nets tools and
float in programming languages).

TheEB_.COMMANDpe has three possible values related with the three lefelsmmand or warning, there-
foreEB.COMMAND = Comfort| Safety | Emergency . The appropriate command results from EBeStrategy
function computation.

5 Discretization of the Problem

Discretization raises several issues. We propose a wayp®wih these issues and apply our solutions to
the emergency braking example.

5.1 Implementing complex functions in Symmetric Nets

Starting from the CPN model we use the methodology present8dction 3.

First, CPN types must be transformed into discrete typesndJthe equal width interval binning dis-
cretization method (presented in Section 3.3) with a nunalbég, k, andky intervals for each variable we
obtain a mesh ok, x ky x kg regions (as defined in definitions 3.2 and 3.1) in the requltiiscretized func-
tion. The resulting sets for variables v andb are then composed d&f ordered elements. For example,
with k = ky = k, = kg = 10 the resulting discretized type ofs [0,4.6,9.2, ...,46] and the discretized braking
function contains 19regions.

With k = 100, the domain of is [0,0.46,0.92, ...,46] and the mesh is composed offI@gions.

Section 3.3 presents two solutions to model complex funstin Symmetric Nets. We select solutibn
in Figure 3 because it is more efficiently represented in §mal®lic Reachability Graph. Therefore we add
place “EB StrategyTable” in the Symmetric Petri net (Figure 8). Thus, cardiied of the domains for places
“Interface Data” and “EB StrategyTable” (respectively named “EBata” and “EBStgyTable” in Figure 8)
are computed using the formul@ard(EBData = Card(EBStgyTable= Card(D x V x B). This means that
these cardinalities are equal to the number of regions afif@etized function.

This method could provide very large markings (that is witla@e number of tuples) in the resulting
Symmetric Net. However, the use of a appropriate state spgresentation (by means of decision diagrams
like in [12]) does not impact the size of the generated stpéees since the large marking is just represented
once (the marking of places encoding complex functionsaisliej.

We chose a simple and generic discretization method that doetake into account the specificity of
functions to be discretized. Other discretization methidasthose using variable intervals can reduce the
number of markings with the same level of accuracy in theltiegudiscretized function. Finally, depending
on the kind of expected analysis, it is also possible to cdmpnd use the equivalence classes. Those aspects
are discussed later on this paper in sections 7.1 and 6.2.2.

5.2 Computation of the error propagation in Symmetric Nets

As presented in Section 3, we compute the precision erraydnted by the discretization operation. The
resulting error in the computation of the “Safety Threshad

_ vEA? - e
Agp safety= (Z(b:I:Ab) +3(vEAy) — (d+Ag)) (2b+3v d) (5.2)
VEA)Z V2
Aepsafety= é(Tg)b) ~ % +3A, £ 4y (5.3)

For example, let us consider a classic private vehicle migigtv = 14m/s (i.e. 5&my/h), on a dry road
(i.e. b=8m/s%), atd = 500m from an obstacle. If we consid&r= 100 intervals and an error of respectively
+0.45m/sfor v, £0.06m/s? for d and-5mfor p. Then we obtain:

DAgp satety€ [—7.25m, +7.29m]

Agb Emergencye [—6.33m,+6.37m]

For the same vehicle at 100 meters from the obstacle, drating= 36m/s (i.e. 13&km/h), on a wet road
(i.e. b = 4m/s?), we obtain:

Agp satety€ [—12.85m,+13.10m)|
Agp Emergencye [—11.93m, +12.19m]

Those results provide an information on the precision of Sgenmetric Net properties. Table 1 gives
some error bounds computed from four values for paranket®s expected, precision of computed thresholds
depends ok. However, precision also depends on the values of variaBlasexample, values afandb are
determinant on the computation of error bounds. Exploithmgse precisions, to validate the Symmetric Net
model and its properties, requires to consider carefuthgdhvalues.

v=13m/s, b=8m/s 2
d =500m

v=36m/s, b=4m/s 2,
d=100m

Discretization parameter

k=10
card(EBData = 10°

Agp satety€ [—70.83m,74.84m)|
Agp Emergencye [—61.64m, 65.64m|

Agp satetye [—1189m,144.5m)|
Agp Emergencye [—109.7m, 1353m|

k=20
card(EBData = 8+ 10°

DAgp safety€ [—35.87m,36.81m)|
AEb_Emergen(;yE [*3127”],3226”]]

Agp safety€ [-61.97m,68.28m|
AEb_EmergenQE [75737”’], 6368m]

k=50
card(EBData = 12.5% 10°

DAgp safety€ [—14.45m,14.61m)|
AEb_Emergen(;yE [*1262”1, 1277m]

Agpsafety€ [—25.47m, 26.47m]
AEb_EmergenQE [72363“’1, 2463m]

k=100
card(EBData = 10°

Agp satety€ [—7.25m,7.29m]
DAgp Emergencye [—6.33m,6.37m)

Agp safety€ [—12.85m,13.10m|
AE b_E mergencye [— 1193”1, 12. 19m]

Table 1:

Error bounds for different discretization paraanet

5.3 Validating the discretization in Symmetric Nets

Discretization of variables and function in the Symmetriet khodel in Figure 8 introduces imprecision.
Depending on properties that need to be verified, this inigitmust be considered. For example, properties
presented section 4.3 can be verified using CTL (Computatiea Logic) [18] formulae. With a discretization
factor ofk = 100 values on input variables, property 1 can be verified aitlaccuracy smaller thah7, 3mon
arelative distance, for a velocity of idson a dry road.

If the introduced imprecision is acceptable with regardtht properties to be verified, then the system
designer can state that the discretization is valid foreéhm®perties. Otherwise, a better accuracy may be
required and a new discretization must be done.

It is also possible to integrate the imprecision in the CTinfalae. To do so, more constraining value
of input variables must be chosen (i.e. an higher speed, erlowaking factor or a closer obstacle) in the
CTL formula. In our case, the simplest way is to choose a lovedue of obstacle position that cover the
discretization error.

In some cases, it is possible to compute the discretizationpait variables depending on the required
precision on the function. This solution is discussed irtieacr.2.

5.4 Transformation to obtain the Symmetric net

The SN in Figure 8 is derived from the CPN in Figure 7. Our psgis to obtain a manageable state space
for model checking, and, as presented in Section 3.3 andjur&i3, this leads us to discretize some types and
also to adopt some modelling for complex functions.

Thus, the different fields cEB.DATAIn Figure 7 are now discretized. For example, type Distanadis-
cretized into an enumeratior}, 50, 100, etc.

EB DATAIs associated t&BDatain the SN of Figure 8 that is a list of 3-upleBigtance , Velocity
Braking _Factor).

Now, as explained in Section 3.3 and shown in Figure 3 (b),at@roach for modelling the function
EB_Strategy is to add a place with a marking that is a conversion tabletferdiscretized function. Thus, the
EB Strategy function in Figure 7 is associated in Figure 8 to a tdtiEStgy Tabléhat represents the discretized
function Emergency , Safety or Comfort). This result is retrieved by means of plaEg Strategy _Table
connected to transitioBB_Process _Strategy

Class Interface_Call Interface_Data
Processld is 1..1; Processld EBData
Distanceis [_0, 50, _100,..,_500]; <> <pid> <«dvbs <Distance.all,Velocity.all Breaking_Factor.all>

Velocity is [_0,_4.6,_0.2,.,_461];

Braking_Factoris[_3, _3.6,_4.2,., 9];

EBCommand is [Comfort, Safety, Emergency] ; EB_Get_Data
Domain <pid, d,v,b>

EBData |s_<D|stance, Velo'cny, Brakmg_Factor> ; EB_Data_Retrieved

EBInArgs is <Processld, Distance, Velocity,

R EBInArgs
Braking_Factor > ; <pid. dvb>
EBStgyTable is <Distance, Velocity, Braking_Factor, P, v,
EBCommand>;
EBOutArgs is <Processld, EBCommand> ;

or s

EB_Strategy_Table

<d, v, b, eb_cmd>
EB_P: Strat T
—trocess_dtrategy <d,v,b, eb_cmd>DQ EBStgyTable

E

Var) <0,0 4 Emergency>,
pid in Processld; <pid, eb_cmd> 238’3’2’%?,?&,%
eb_cmd in EBCommand; EB_Command_Computed o
din Distance; EBOutArgs
v in Velocity; <pid, eb_cmd>
b in Braking_Factor;

EB_Actuation
<pid> <eb_cmd>
Interface_Answer Interface_Command

Processld EBCommand
Figure 8: Symmetric Petri net for Emergency Braking module

Of course, the models presented in this paper are only sib-giaa system. They can be independently
verified but the purpose is to integrate them in a more corapigiresentation of the system. This integration
may introduce new discretization constraints and verificetormulae must be rewritten. Those aspects are
discussed in section 7 of this paper.

6 Net analysis

The use of a discretization method with symmetric nets gaasicomplex models with large markings. It
is important to know what are the consequences on the netsasahnd model checking tools. In this section
we present an overview of the analysis results obtainedemtdel.

Objectives The objectives of this analysis was first to analyse the ptigsof the net and sources of combi-
natorial explosion. Another interesting aspect of thidgsia was to find the limitation of the tools used, which
are not a priori suited to this type of net, and find some otétidn methods.

Experimental method As the complexity of the models presented in this paper isnipalependent on
the discretisation made on the three input variables, wasieed on the impact of this discretization. The
symetric net model of Figure 8 was adapted to the experimgmonnecting place “InterfacAnswer” to
place “InterfaceCall” with two arcs and a transition with arcs expressiorsgreng variable< pid > to the
arcs. This allows the net to loop until the marking in placetérfaceData” is empty. The marking of place
“Interface Data” was initialized with all values of domain “EBData” asepented Figure 8. Then scripts were
used to initialize the class declaration and the markindade“EB StrategyTable” depending on the chosen
discretization level. Figure 9 gives an overview of the stlo$ properties that were tested.

Technical aspects The analysis of the Petri Net is a complex operation thatiregulifferent transformations
of the model like unfolding or reduction. Different tools reeused to make various analysis. First the CPN
models were designed with CPN-Tools [13], then the symmetddels were designed using Coloane and

PT Net model |—|Bounds (and safety) |
CPN model | =" | SN model | ——" | Reachability Graph CTL

Dead marking
\ Symbolic RG Deadlocks

C-Invariants LIL

Figure 9: Overview of the analyses

Petriscript [31].To make the analysis of the model we chbseGPN-AMI [31] environment that provides a
unified access to different tools like: a Petri net unfoldiogl, PROD [32] or GreatSPN [8].

6.1 Structural analysis

The first analyses made on the net are structural analyseg.domot require the construction of the reach-
ability graph and then, do not require to apply firing ruletiefiefore they are less complex than behavioural
analyses.

6.1.1 Symmetric net analysis

We made the computation of Coloured-Invariant on the Symmeét with different discretisations. The
only invariant detected is the marking of place “FH#rategyTable”, as expected. The results show that the
discretization does not have a significant impact on the nmgnged for the computation. But due to the size
of the marking of place “EBStrategyTable”, which is composed of all associations between b&gand
commands, the tool is not able to show the invariant for largekings even if it claims to have made the
computation.

6.1.2 Unfolding the net

The computation of the unfolded net requires an increasimguat of memory depending on the discretiza-
tion of input variables. It also gives an increasing unfdldet. In fact, the size of the domain “EBData” has
a cubic growth. An analysis of the symmetric net shows thatsilae of the unfolded net in terms of places
(np) follows the law:np=5# (k)2 + 8 ,wherek is the discretization level. The use of the CPN-AMI unfolder
confirms that the unfolding of the symmetric net did follovisttaw. It also appears that the memory used to
compute the unfolded net grows even more quickly than the gizhe unfolded net. This explains why we
faced a combinatorial explosion in the computation of thimlaled net which has bounded the coverage of our
experiment.

6.1.3 Bound computation

We were able to test the bounds and safety of the net. The effe®ively bounded but the complexity of
the computation, in terms of memory and time used, is the semntiee one of the unfolding operation.

6.2 Behavioural analysis

The behavioural analysis is based on the use of Great-SPRraxdo produce the reachability graphs.

6.2.1 Computation of the reachability graph

The generation of rechability graphs seems, accordingadetv tests that we made, to have about the
same complexity in terms of memory and time as that of theldinfg of the net. The size seems also to follow

a cubic growth. Using the symbolic rechability graph of G&RN is a little bit more efficient. We did not
make enough LTL and CTL queries to provide conclusions keitistection of deadlocks is not generating an
additionnal combinatorial explosion.

6.2.2 Semantic equivalence Classes in the Model

If we consider the computation safety propertiegalso called reachability properties) in the reachability
graph, we can deduce that numerous states correspond tarsaxécution path in the original program or
specification.

Emergency limit surface Safety limit surface Computed equivalence classes
“‘"«&N. mfort zone

KR LR
v v’v‘V"" X Vv”‘"“‘\
x&m; %500, “’(’x&&gﬁe&{o&. Safety surface
X WK afe zone
K
““: KRXRRLS /“:‘ Emergency surface
L X 9 A SO IS
RIS]
SR
(RREIRALIRTR

7,0

braking factor (m/e) g, 0 Velocty (/) 0 Velocity (m/s) o

0 Velocity (m/s)

7,0 7,0
Braking factor (/) 9,0 Braking factor (m/8)’ g o

Figure 10: Building behavioural equivalence classes frbemdurfaces generated by the resolution of safety
and emergency equations.

Thus, some accessibility properties could be preserved tfir equivalence classes. It is then of interest to
exploit these, for example, when the computed subnet igliated into a larger specification.

In our example, the equivalence classes are based on thelmatibur and must be computed from the
physics equations that define the limits between the diftssguations of the system: “Comfort”, “Safety”,
“Emergency”. To determine the surface that delimits edaivee classes in the state space, we compute solu-
tions equations 4.2 and 4.3. We then get the two surfacelgegphon the left part of Figure 10.

From these surfaces, we can deduce five equivalence zortesiieachability graph as shown on the right
part of Figure 10:

e the one above safety limit surface,

¢ the safety limit surface itself,

¢ the one between safety and emergency surfaces,
e the emergency surface itself,

o the one below the emergency surface.

For reachability properties, it is possible to provide aer@mt discretization that reaches at least all these
equivalence classes by randomly selecting any point in eaok and adding the corresponding valuebof
(from B axis),d (from D axis) andv (from V axis). Then, for each discretized coldBy D andV, we can
take the coordinates of five points randomly chosen in thesezfines. This approach is similar to the one
proposed in [16] that was dealing with one colour domain @mlgt used guards from the Petri nets to compute
equivalence classes.

6.3 Conclusion on the analysis

The conclusions on the analysis of the nets are balanced.aiéeable to check properties but not for large
models. The limitation comes from either the limitation béttools, that are often not able to manage large
markings, or from the complexity of the property to be anati;sNe think anyway, that exploiting behavioural
symmetries will solve some of those limitations.

7 Discussion and Open Issues

We have described and applied a discretization method te with hybrid systems and handle continuous
variables in a safe and discrete manner. In this section p&a a discussion on several aspects.

7.1 Other discretization parameters

The methodology presented in this paper is based on the uadlistretization algorithm to discretize
continuous variables. In section 5.2, we used “equal widtérial binning” algorithm because it is simple to
implement. This algorithm, like many others, relies on ditization parameters that can be optimized for a
given set of continuous variables and functions.

However, in the emergency braking module example, we malyshe partial derivates of the error on the
two thresholds&ep safetyaNdAeg Emergency- We then find that variablesandd are more influent thah. For
example, the partial derivate of the error on Bi& Sa f etythreshold (equation 5.3) with respect to the variable
Vis:

aAEb_Safety: vEAy v (7.1)
ov b+A, b

This allows to find optimized discretization parameterssidering the respective influence of each in-
volved variable. This is done by considering different paegers for each discretized variable depending on
its influence on the error propagation.

Discretization parameters| v = 14m/s b= 8m/s2,d =500m | v=46m/s b= 4m/s 2,d = 100m
k=114 k= 73,ky =120 | Depsateryc |—6.167m,6.203m] Deb.satery€ |—12.09m, 12.40m]

Table 2: Discretization with optimized criteria

Table 2 presents the resulting error when discretizatioarpaters are optimized using partial derivates.
It shows that we can reduce the resulting error of about 108 discretization parameters based on partial
derivates.

The study of the best discretization method and paramedera fjiven set of continuous variable and
function is a complex problem which can give very interggtiasults. It is a promising field for future work
on optimization of the methodology presented in this paper.

7.2 Tunning the discretisation

It is of interest to compute the discretization intervalglstretized types (helg, k, andky) according to
the maximum error tolerated on one type involved in a prgpeltere error must be boundadriori.

Let us consider as an example the braking distance foncfidn) presented section 4.2. It is possible to
compute the discretization intervals of variablegndb, based on the accuracy required for the functign
Let +£A; be the tolerated error ofy, and+A,, +Ay, be the resulting errors anandb. Using the error bounds
propagation as presented section 3.3 we get:

(VEA)? V2

A = bty 24D

(7.2)

We then obtaif

24 b%x At — 25 bk Ay v— bx A2
Ny = — v 7.3
b 2xbxAf 4+ V2 (7:3)
and two solutions foA, that are a little bit more complex.

Let Vimin,Vmaxbmin @ndbmax be the bounds of andb. The cardinality o/ andB sets are:

Card(V) = V"“;X*i;‘:m"‘ (7.4)
Card(B) = b'“""zx*i_A:"“” (7.5)

Now, consider that we want the same cardinalitie$f@ndB colour setsk, = k,). We obtair:

(Vmax* Vmin)Ab
bmax— bmin
Using the value of, of equation (7.6) in equation (7.3), it is now possible to ponteAy, from the desired
As.
For only two variables, this method is complex as it givestipld solutions that need to be analyzed to
choose the appropriate solutions. However, it providesyatowaompute the discretization intervals of input
variables depending on the desired output error.

A, = (7.6)

8 Conclusion

In this paper, we proposed a way to integrate continuouscéspecomplex specifications into a discretized
Petri Net model. Our approach was studied in the contexttefligent Transport Systems and, more precisely,
management of emergency braking when an obstacle is idehtifi the road. An application to this case study
is provided.

This discretization method relies on the use of equationdatiing the problem. Such equations come
from the physical models that interact with the system. \achtthese equations to a CPN template and then
proceed to its transformation in order to be able to have atyaable model (i.e. that remains finite).

The equations modeling the problem are used to:

e Provide a discretized abstraction
e To evaluate the quality of this abstraction with regard$groof of properties on the resulting model.

This is a key point in modeling and evaluating a system by medfiormal specification. It is crucial for
engineers to evaluate the quality of the proven properties iinecessary when assumptions are done (here,
they come from the discretization), to evaluate their inbjpacthe system’s properties. Typically, imprecision
raised by discretization may have to be corrected by eithplyang a more precise discretization or adding
constants in formulas expressing properties to be checked.

In our paper, discretization is applied on symmetric Nettuged from CPN since our tools rely on sym-
metric nets. Of course, it is also valid on the CPN models.

In our methodology, different discretization algorithnendoe applied. We used in this paper a simple
algorithm as a first approach but other ones based on noonrondiscretization intervals are promising alter-
natives. This will introduce new constraints in formal ¥ieation and in error propagation computation but it
is a interesting field for future works.

Also, managing more than one module is of interest. In theéesaof a SAFESPOT application, several
modules run in parallels and may introduce more continugisst and variables. Future work will then have
to evaluate how a larger number of variable (and constiadotsld be managed. In particular, experimenting,

2We intentionally removed the: operator to increase readability.
3Note that it is possible to choose another factor betw@an(V) andCard(B) as explained section 7.1

propagation of discretization contraints between difitraodules need a particular attention.

Acknowledgements: We would like to thank the anonymous referees fro their cdnefading and helpful
comments.

References

[1] J-R. Abrial. The B book - Assigning Programs to meaninGambridge Univ. Press, 1996.

[2] F. Bonnefoi, F. Bellotti, T. Scendzielorz, and F. Visititer. SAFESPOT Applications for Infrasructure-
based Co-operative Road Safety 14th World Congress and Exhibition on Intelligent Trangi®ystems
and ServicesBeijing, China, October 2007.

[3] F. Bonnefoi, L. Hillah, F. Kordon, and X. Renault. Desjgnodeling and analysis of ITS using UML
and Petri Nets. 110th International IEEE Conference on Intelligent Trangption Systems (ITSC'0y)
pages 314-319, Seattle, USA, September 2007. IEEE Press.

[4] R. Brignolo. Co-operative road safety - the SAFESPOEgnated project. IAPSN - APROSYS Confer-
ence Advanced Passive Safety Network, May 2006.

[5] Didier Buchs and Nicolas Guelfi. A formal specificatiomafnework for object-oriented distributed sys-
tems.|EEE Trans. Software Eng26(7):635-652, 2000.

[6] R. Brown C. Covault and D. DriscolUJncertainties and Error Propagation - Appendix V of Phydied
Manual Case Western Reserve University, 2005.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. HatldA symbolic reachability graph for coloured
Petri nets.Theoretical Computer Scienck76(1-2):39-65, 1997.

[8] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudea@PN 1.7: Graphical Editor and Analyzer
for Timed and Stochastic Petri Nets Performance Evaluatgpecial issue on Performance Modeling
Tools 24((1&2)):47-68, November 1995.

[9] Giovanni Chiola, Claude Dutheillet, Giuliana Frandeisis, and Serge Haddad. Stochastic well-formed
colored nets and symmetric modeling applicatidBEEE Trans. Computer#t2(11):1343-1360, 1993.

[10] P. Christofides and N. El-Farr@ontrol Nonlinear And Hybrid Process Systems: Designs facdstainty,
Constraints And Time-delaySPringer Verlag, 2005.

[11] Petri Nets Steering Committee. Petri nets tool databgaick and up-to-date overview of existing tools
for petri netshttp://www.informatik.uni-hamburg.de/TGl/PetriNets/ tools/db.html

[12] J-M. Couvreur and Y. Thierry-Mieg. Hierarchical Deicis Diagrams to Exploit Model Structur€ormal
Techniques for Networked and Distributed Systems - FORDB, pages 443-457, 2005.

[13] The CPN Tools Homepage, 2007. http://www.daimi.alCGiNtools.

[14] S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. BpReééang, and L. Iftode. TrafficView: A Driver
Assistant Device for Traffic Monitoring based on Car-to-Cammunication. In IEEE Computer Press,
editor,IEEE Semiannual Vehicular Technology Conferei2894.

[15] René David and Hassane Alla. On Hybrid Petri NeBiscrete Event Dynamic Systems: Theory and
Applications 11(1-2):9-40, 2001.

[16] M. Doche, I. Vernier-Mounier, and F. Kordon. A modulgpaoach to the specification and validation
of an electrical flight control system. FProceedings of the International Symposium of Formal Mésho
Europe on Formal Methods for Increasing Software Produistipages 590-610. Springer-Verlag, 2001.

[17] James Dougherty, Ron Kohavi, and Mehran Sahami. Sigezhand unsupervised discretization of con-
tinuous features. Iimternational Conference on Machine Learnjqages 194-202, 1995.

[18] E. Allen Emerson and Joseph Y. Halpern. Decision pracesiand expressiveness in the temporal logic
of branching timeJ. Comput. Syst. ScB0(1):1-24, 1985.

[19] IEEE 802.11 Working Group for WLAN StandarddEEE 802.11 tm Wireless Local Arae Netwarks
IEEE, 2008.

[20] Frame Forum. The FRAME forum home paggy://www.frame-online.net

[21] L. Hillah, F. Kordon, L. Petrucci, and N. Treves. PNratardisation : a survey. Imternational Con-
ference on Formal Methods for Networked and Distributedeédys (FORTE’'06)pages 307322, Paris,
France, September 2006. IFIP.

[22] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baand T. Vergnaud. On the Formal Verification
of Middleware Behavioral Properties. @ih International Workshop on Formal Methods for Indudtria
Critical Systems (FMICS’04pages 139-157. Elsevier, September 2004.

[23] ISO/IEC-JTC1/SC7/WG19. International Standard Q7 15909: Software and Systems Engineering
- High-level Petri Nets, Part 1: Concepts, Definitions andhical Notation, December 2004.

[24] D.Luca J.Daniel. |IEEE 802.11p: Towards an InternadidBtandard for Wireless Access in Vehicular
Environments. IfProceedings of Vehicular Technology Conference,VTC §pifEE pages 2036—2040,
May 2008.

[25] KurtJensenColoured Petri nets: basic concepts, analysis methods aactipal use, vol. 1, vol. 2 et vol.
3. Springer-Verlag, London, UK, 1995.

[26] Kurt Jensen and Lars M. Kristense@oloured Petri Nets, Modelling and Validation of Concur&ys-
tems Monograph to be published by Springer Verlag, 2008.

[27] F. Kordon, A. Linard, and E. Paviot-Adet. Optimized G#d Nets Unfolding. Innternational Confer-
ence on Formal Methods for Networked and Distributed Syst@f@RTE'06) volume 4229 olLNCS
pages 339-355, Paris, France, September 2006. SprindagVer

[28] Charles Lakos and Glenn Lewis. Incremental state spaostruction of coloured Petri nets. Rroc.
22nd Int. Conf. Application and Theory of Petri Nets (ICAT®PD, volume 2075 ofLecture Notes in
Computer Scieng@ages 263—282. Springer, 2001.

[29] Glenn Lewis. Incremental specification and analysis in the context obem@d Petri nets PhD thesis,
University of Hobart, Tasmania, 2002.

[30] Vern Lindberg. Uncertainties and Error Propagation - Part | of a manual on ¢émtainties, Graphing,
and the Vernier CaliperRochester Institute of Technology, 2000.

[31] LIP6/MoVe. The CPN-AMI home pagéitp:/iwww.lip6.fr/cpn-ami/

[32] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysa&rod reference manual. Technical report,
Helsinki University of Technology, 1995.

[33] Jacques Vautherin. Parallel systems specificatiotts @aloured Petri nets and algebraic specifications.
In Advances in Petri Nets 1987, covers the 7th European Wopkshdpplications and Theory of Petri
Nets, June 1986pages 293-308, London, UK, 1987. Springer-Verlag.

[34] ISO TC204 WG-16 CALM architecture ISO, 2007.

